Log in

Over 50 Years of Overgrowth of the Ash Dump, The Content of Nitrogen and Phosphorus Changed in Young Soils but it Did Not Change in Plants

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

Changes in the nitrogen (N) and phosphorus (P) content in the ash substrate and plant leaves during the primary succession of overgrowing ash dumps of different ages were studied. The work was carried out on the young (overgrowth duration 5–8 years) and old (overgrowth duration 53–56 years; two sites – with meadow and forest vegetation) ash dumps of a thermal power plant in the Middle Urals. In the emerging soil and leaves of model plants, the content of N and P was determined on each dump. In young soils, a predictable and explainable successional dynamics of N and P was established: over 53–56 years, the N content increased 2.4–7.1 times, while the P content decreased 1.1–2.1 times. In plant leaves, the content of N and P at different stages of overgrowth was actually constant: 1.6–2.1% of N and 2.2–2.9 mg/g of P. In general, it has been found that in successionally young habitats, and in more advanced ones with develo** forest vegetation, against the background of a multiple increase in the N content in the soil, the N content in plants remains low. With a high probability, on both dumps, the availability of nitrogen is a factor limiting the development of plants. This is evidenced by the results of the analysis of N/P ratio values in leaves and comparison of our array of N values in leaves with global averages of N content in the same species. Thus, the results with respect to the successional dynamics of the content of nitrogen and phosphorus in soils and plants of dumps of different ages turned out to be surprisingly little consistent with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Elser, J.J., Bracken, M.E.S., Cleland, E.E., et al., Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems, Ecol. Lett., 2007, vol. 10, no. 12, pp. 1135–1142. https://doi.org/10.1111/j.1461-0248.2007.01113.x

    Article  PubMed  Google Scholar 

  2. Bui, E.N. and Henderson, B.L., C : N : P stoichiometry in Australian soils with respect to vegetation and environmental factors, Plant Soil, 2013, vol. 373, pp. 553–568. https://doi.org/10.1007/s11104-013-1823-9

    Article  CAS  Google Scholar 

  3. Chapin, F.S., Vitousek, P.M., and Cleve, K., The nature of nutrient limitation in plant communities, Am. Nat., 1986, vol. 127, pp. 48–58.

    Article  Google Scholar 

  4. Aerts, R. and Chapin, F.S., The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns, Adv. Ecol. Res., 2000, vol. 30, pp. 1–67. https://doi.org/10.1016/S0065-2504(08)60016-1

    Article  CAS  Google Scholar 

  5. Wang, G., Leaf trait co-variation, response and effect in a chronosequence, J. Veg. Sci., 2007, vol. 18, no. 4, pp. 563–570. https://doi.org/10.1111/j.1654-1103.2007.tb02570.x

    Article  Google Scholar 

  6. He, M., Dijkstra, F.A., and Zhang, K., Leaf nitrogen and phosphorus of temperate desert plants in response to climate and soil nutrient availability, Sci. Rep., 2014, vol. 4, p. 6932.

  7. Soudzilovskaia, N.A., Onipchenko, V.G., Cornelissen, J.H.C., et al., Biomass production, N : P ratio and nutrient limitation in a Caucasian alpine tundra plant community, J. Veg. Sci., 2005, vol. 16, pp. 399–406. https://doi.org/10.1111/j.1654-1103.2005.tb02379.x

    Article  Google Scholar 

  8. von Oheimb, G., Power, S.A., Falk, K., et al., N : P Ratio and the nature of nutrient limitation in Calluna-dominated heathlands, Ecosystems, 2010, vol. 13, pp. 317–327. https://doi.org/10.1007/s10021-010-9320-y

    Article  CAS  Google Scholar 

  9. Liu, B., Han, F., Ning, P., et al., Root traits and soil nutrient and carbon availability drive soil microbial diversity and composition in a northern temperate forest, Plant Soil, 2022, vol. 479, pp. 281–299. https://doi.org/10.1007/s11104-022-05516-z

    Article  CAS  Google Scholar 

  10. Ning, Z., Zhao, X., Yulin, L., et al., Plant community C : N : P stoichiometry is mediated by soil nutrients and plant functional groups during grassland desertification, Ecol. Eng., 2021, vol. 162, no. 1, pp. 106–179. https://doi.org/10.1016/j.ecoleng.2021.106179

    Article  Google Scholar 

  11. Yan, T., Lu, X.-T., Zhu, J.-J., et al., Changes in nitrogen and phosphorus cycling suggest a transition to phosphorus limitation with the stand development of larch plantations, Plant Soil, 2018, vol. 422, pp. 385–396. https://doi.org/10.1007/s11104-017-3473-9

    Article  CAS  Google Scholar 

  12. Peltzer, D.A., Wardle, D.A., Allison, V.J., et al., Understanding ecosystem retrogression, Ecol. Monogr., 2010, vol. 80, no. 4, pp. 509–529. https://doi.org/10.1890/09-1552.1

    Article  Google Scholar 

  13. Makhonina, G.I., Ekologicheskie aspekty pochvoobrazovaniya v tekhnogennykh ekosistemakh Urala (Ecological aspects of soil formation in technogenic ecosystems of the Urals), Yekaterinburg: Ural. Univ., 2003.

  14. Vitousek, P.M., Nutrient Cycling and Limitation: Hawaii as a Model System, Princeton: Princeton Univ. Press, 2004.

    Book  Google Scholar 

  15. Laliberte, E., Turner, B.L., Costes, T., et al., Experimental assessment of nutrient limitation along a 2-million year dune chronosequence in the south-western Australia biodiversity hotspot, J. Ecol., 2012, vol. 100, pp. 631–642. https://doi.org/10.1111/j.1365-2745.2012.01962.x

    Article  CAS  Google Scholar 

  16. Coomes, D.A., Bentley, W.A., Tanentzap, A.J., et al., Soil drainage and phosphorus depletion contribute to retrogressive succession along a New Zealand chronosequence, Plant Soil, 2013, vol. 367, pp. 77–91.https://doi.org/10.1007/s11104-013-1649-5

    Article  CAS  Google Scholar 

  17. Olde Venterink, H. and Gusewell, S., Competitive interactions between two meadow grasses under nitrogen and phosphorus limitation, Funct. Ecol., 2010, vol. 24, pp. 877–886. https://doi.org/10.1111/j.1365-2435.2010.01692.x

    Article  Google Scholar 

  18. Darcy, J.L., Schmidt, S.K., and Knelman, J.E., Phosphorus, not nitrogen, limits plants and microbial primary producers following glacial retreat, Sci. Adv., 2018, vol. 4, no. 5, p. eaaq0942. https://doi.org/10.1126/sciadv.aaq0942

  19. Satti, P.P., Mazzarino, M.J., and Roselli, L., Factors affecting soil P dynamics in temperate volcanic soils of southern Argentina, Geoderma, 2007, vol. 139, pp. 229–240.

    Article  CAS  Google Scholar 

  20. Hayes, P.E., Turner, B.L., Lambers, H., et al., Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence, J. Ecol., 2014, vol. 102, pp. 396–410. https://doi.org/10.13140/2.1.5050.4968

    Article  CAS  Google Scholar 

  21. Zhong, H., Zhou, J., Wong, W.-S., et al., Exceptional nitrogen-resorption efficiency enables Maireana species (Chenopodiaceae) to function as pioneers at a mine-restoration site, Sci. Total Environ., 2021, vol. 779, p. 146420. https://doi.org/10.1016/j.scitotenv.2021.146420

    Article  CAS  PubMed  Google Scholar 

  22. Read, D.J. and Perez-Moreno, J., Mycorrhizas and nutrient cycling in ecosystems—A journey towards relevance?, New Phytol., 2003, vol. 157, pp. 475–492. https://doi.org/10.1046/j.1469-8137.2003.00704.x

    Article  CAS  PubMed  Google Scholar 

  23. Dickie, I.A., Martinez-Garcia Laura, B., Koele, N., et al., Mycorrhizal and mycorrhizal fungal communities throughout ecosystem development, Plant Soil, 2013, vol. 367, pp. 11–39.https://doi.org/10.1007/s11104-013-1609-0

    Article  CAS  Google Scholar 

  24. Koerselman, W. and Meuleman, A.F.M., The vegetation N : P ratio: A new tool to detect the nature of nutrient limitation, J. Appl. Ecol., 1996, vol. 33, no. 6, pp. 1441–1450. http://www.jstor.org/stable/2404783

    Article  Google Scholar 

  25. Güsewell, S., N : P ratios in terrestrial plants: Variation and functional significance, New Phytol., 2004, vol. 164, pp. 243–266. https://doi.org/10.1111/j.1469-8137.2004.01192.x

    Article  PubMed  Google Scholar 

  26. Pasynkova, M.V., Ash as a substrate for growing plants, in Rasteniya i promyshlennaya sreda (Plants and Industrial Environment), Sverdlovsk: Ural. Gos. Univ., 1974, pp. 29–44.

  27. Gajić, G., Djurdjević, L., Kostić, O., et al., Ecological potential of plants for phytoremediation and ecorestoration of fly ash deposits and mine wastes, Front. Environ., 2018, vol. 6, p. 124. https://doi.org/10.3389/fenvs.2018.00124

    Article  Google Scholar 

  28. The Plant List. http://www.theplantlist.org/. Cited November 21, 2022.

  29. Arinushkina, E.V., Rukovodstvo po khimicheskomu analizu pochv (Guide to the Chemical Analysis of Soils), Moscow: Mosk. Gos. Univ., 1970.

  30. Teoriya i praktika khimicheskogo analiza pochv (Theory and Practice of Chemical Analysis of Soils), Vorob’ev, L.A., Ed., Novosibirsk: GEOS, 2006.

  31. Kattge, J., Boenisch, G., Diaz, S., et al., TRY plant trait database – enhanced coverage and open access, Global Change Biol., 2020, no. 26, pp. 119–188. https://doi.org/10.1111/gcb.14904

  32. Wang, B. and Qiu, Y.L., Phylogenetic distribution and evolution of mycorrhizas in land plants, Mycorrhiza, 2006, vol. 16, no. 5, pp. 299–363.

    Article  CAS  PubMed  Google Scholar 

  33. Akhmetzhanova, A.A., Soudzilovskaia, N.A., Onipchenko, V.G., et al., A rediscovered treasure: Mycorrhizal intensity database for 3000 vascular plant species across the former Soviet Union, Ecology, 2012, vol. 93, no. 3, pp. 689–690. https://doi.org/10.1890/11-1749.1

    Article  Google Scholar 

  34. Betekhtina, A.A. and Veselkin, D.V., Prevalence and intensity of mycorrhiza formation in herbaceous plants with different types of ecological strategies in the Middle Urals, Russ. J. Ecol., 2011, vol. 42, no. 3, pp. 192–198.https://doi.org/10.1134/S1067413611030040

    Article  Google Scholar 

  35. Betekhtina, A.A. and Veselkin, D.V., Mycorrhizal and non-mycorrhizal dicotyledonous herba-ceous plants differ in root anatomy: Evidence from the Middle Urals, Russia, Symbiosis, 2019, vol. 77, no. 2, pp. 133–140. https://doi.org/10.1007/s13199-018-0571-2

    Article  CAS  Google Scholar 

  36. Gadzhiev, I.M. and Kurachev, V.M., Genetic and ecological aspects of the study and classification of soils in technogenic landscapes, in Ekologiya i rekul’tivatsiya tekhnogennykh landshaftov (Ecology and Reclamation of Technogenic Landscapes), Novosibirsk: Nauka, 1992, pp. 6–15.

  37. IUSS Working Group WRB. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps, Vienna: International Union of Soil Sciences (IUSS), 2022.

  38. Cornelissen, J.H.C., Aerts, R., Cerabolini, B., et al., Carbon cycling traits of plant species are linked with mycorrhizal strategy, Oecologia, 2001, vol. 129, no. 4, pp. 611–619.

    Article  CAS  PubMed  Google Scholar 

  39. Walker, T.W. and Syers, J.K., The fate of phosphorus during pedogenesis, Geoderma, 1976, vol. 15, pp. 1–19.

    Article  CAS  Google Scholar 

  40. Nazaryuk, V.M. and Kalimullina, F.R., The role of natural ecosystems in restoring the fertility of plowed soils in Western Siberia, Probl. Agrokhim. Ekol., 2017, no. 1, pp. 43–50.

  41. Komarov, A., Chertov, O., Bykhovets, S.S., et al., Effects of the aspen short-rotation plantation on the C and N biological cycles in boreal forests: The model experiment, Math. Biol. Bioinf., 2015, vol. 10, no. 2, pp. 398–415. https://doi.org/10.17537/2015.10.398

    Article  Google Scholar 

  42. Betekhtina, A.A., Nekrasova, O.A., Radchenko, T.A., et al., Decomposition of meadow and forest plant roots in the Ash substrate of power plant dumps: A laboratory experiment, Biol. Bull., 2020, vol. 47, no. 3, pp. 299–305.https://doi.org/10.1134/S1062359020010033

    Article  CAS  Google Scholar 

  43. Betekhtina, A.A., Ganem, A., Nekrasova, O.A., et al., Factors of carbon and nitrogen contents in the fine roots of plants in the Middle Urals, Russ. J. Ecol., 2021, vol. 52, no. 2, pp. 99–108.https://doi.org/10.1134/S106741362102003X

    Article  CAS  Google Scholar 

  44. Ghafoor, A., Poeplau, C., and Kätterer, T., Fate of straw- and root-derived carbon in a Swedish agricultural soil, Biol. Fertil. Soils, 2017, vol. 53, no. 2, pp. 257–267. https://doi.org/10.1007/s00374-016-1168-7

    Article  CAS  Google Scholar 

  45. Poirier, V., Roumet, C., and Munson, A.D., The root of the matter: Linking root traits and soil organic matter stabilization processes, Soil Biol. Biochem., 2018, vol. 120, pp. 246–259. https://doi.org/10.1016/j.soilbio.2018.02.016

    Article  CAS  Google Scholar 

  46. Makarov, M.I., The role of mycorrhiza in transformation of nitrogen compounds in soil and nitrogen nutrition of plants: A review, Eurasian Soil Sci., 2019, vol. 52, no. 2, pp. 193–205.https://doi.org/10.1134/S1064229319100077

    Article  CAS  Google Scholar 

  47. Makarov, M.I., Lavrenov, N.G., and Onipchenko, V.G., Nitrogen nutrition of plants in an Alpine lichen heath under the conditions of soil enrichment with biogenic elements, Russ. J. Ecol., 2020, vol. 51, no. 2, pp. 99–106.https://doi.org/10.1134/S1067413620020083

    Article  CAS  Google Scholar 

  48. Cross, A.T. and Lambers, H., Young calcareous soil chronosequences as a model for ecological restoration on alkaline mine tailings, Sci. Total Environ., 2017, vols. 607–608, pp. 168–175. https://doi.org/10.1016/j.scitotenv.2017.07.005

    Article  CAS  PubMed  Google Scholar 

  49. Crews, T.E., Kitayama, K., Fownes, J.H., et al., Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii, Ecology, 1995, vol. 76, pp. 1407–1424. https://doi.org/10.2307/1938144

    Article  Google Scholar 

  50. Satti, P.P., Mazzarino, M.J., Roselli, L., et al., Factors affecting soil P dynamics in temperate volcanic soils of southern Argentina, Geoderma, 2007, vol. 139, nos. 1 2, pp. 229–240. https://doi.org/10.1016/j.geoderma.2007.02.005

    Article  CAS  Google Scholar 

  51. Makarov, M.I., Phosphorus in soil organic matter, Extended Abstract of Doctoral (Biol.) Dissertation, Moscow, 2004.

  52. Kraus, T.E., Dahlgren, R.A., and Zasoski, R.J., Tannins in nutrient dynamics of forest ecosystems—A review, Plant Soil, 2003, vol. 256, no. 1, pp. 41–66. https://doi.org/10.1023/A:1026206511084

    Article  CAS  Google Scholar 

  53. Mallik, A.U., Conifer regeneration problems in boreal and temperate forest with ericaceous understory: Role of disturbance, seedbed limitation, and keystone change, Crit. Rev. Plant Sci., 2003, vol. 22, pp. 341–366.

    Article  Google Scholar 

  54. Dergacheva, M.I., Sistema gumusovykh veshchestv pochv (The System of Humic Substances in Soils), Novosibirsk: Nauka, 1989.

  55. Brady, N.C. and Well, R.R., Elementos da Natureza e Propriedades dos Solos, Porto Alegre: Bookman, 2013.

    Google Scholar 

  56. Vergutz, L., Manzoni, S., Porporato, A., et al., Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants, Ecol. Monogr., 2012, vol. 82, pp. 205–220.

    Article  Google Scholar 

Download references

Funding

The study was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation within the Development Program of the Ural Federal University in accordance with the program of strategic academic leadership Priority-2030; geobotanical research and plant analysis were carried out within the state task (subject No. FEUZ-2023-0023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Betekhtina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betekhtina, A., Nekrasova, O., Uchaev, A. et al. Over 50 Years of Overgrowth of the Ash Dump, The Content of Nitrogen and Phosphorus Changed in Young Soils but it Did Not Change in Plants. Russ J Ecol 54, 287–296 (2023). https://doi.org/10.1134/S1067413623040045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413623040045

Keywords:

Navigation