Log in

Comparative Analysis of UN and UO2 Oxidation in Air and Nitrogen Hemioxide

  • Published:
Radiochemistry Aims and scope

Abstract

Oxidation of UO2 and UN by atmospheric oxygen and nitrogen hemioxide, which is a hard-to-localize greenhouse gas, was investigated by thermal analysis. For oxidation, mixtures of N2O–N2 and O2–N2 were used with a 20% volume fraction of the oxidizing agent. For UO2 and UN, the phase composition of the final oxidation product in air and in N2O is the same―U3O8. In both cases, N2O behaves as a milder oxidizing agent compared to atmospheric oxygen. Oxidation of UO2 and UN in an N2O flow starts at a temperature 180 and 70°C higher than in air, respectively. The oxidation of UN in an N2O flow proceeds in three stages. At the first stage, the reaction products are UO2 and U2N3; UO2 is the product of the second stage; and at the third stage U3O8 is produced. No pronounced staging is observed in the UO2 oxidation process. The possibility of utilizing nitrogen hemioxide when it is used in the course of voloxidation (oxidation) of spent nuclear fuel is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Goode, J.H., Voloxidation—Removal of Volatile Fission Products from Spent LMFBR Fuels: ORNL-TM-3723, Oak Ridge: Oak Ridge National Laboratory, 1973.

    Book  Google Scholar 

  2. Allbutt, M. and Dell, R.M., J. Nucl. Mater., 1967, vol. 24, no. 1, pp. 1–20.

    Article  ADS  CAS  Google Scholar 

  3. Grachev, A.F., Zabudko, L.M., Mochalov, Y.S., Zvir, E.A., Kryukov, F.N., Zozulya, D.V., Ivanov, Y.A., and Skupov, M.V., Abstracts of Papers, Int. Conf. on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development (FR17), Vienna, Austria, 2017.

  4. Dell, R.M., Wheeler, V.J., and McIver, E.J., Trans. Faraday Soc., 1966, vol. 62, pp. 3591–3606.

    Article  CAS  Google Scholar 

  5. Ohmichi, T. and Honda, T., J. Nucl. Sci. Technol., 1968, vol. 5, , no. 11, pp. 600–602.

    Article  CAS  Google Scholar 

  6. Dell, R.M. and Wheeler, V.J., J. Nucl. Mater., 1967, vol. 21, no. 3, pp. 328–336.

    Article  ADS  CAS  Google Scholar 

  7. Sole, M.J. and Van der Walt, C.M., Acta Metall., 1968, vol. 16, no. 4, pp. 501–510.

    Article  CAS  Google Scholar 

  8. Rama Rao, G.A., Mukerjee, S.K., Vaidya, V.N., Venugopal, V., and Sood, D.D., J. Nucl. Mater., 1991, vol. 185, pp. 231–241.

    Article  ADS  Google Scholar 

  9. Kulyukhin, S.A., Nevolin, Y.M., Gordeev, A.V., and Bessonov, A.A., Radiochemistry, 2019, vol. 61, no. 2, pp. 146–155.

    Article  CAS  Google Scholar 

  10. Shadrin, A.Y., Dvoeglazov, K.N., Mochalov, Y.S., Vidanov, V.V, Kashcheev, V.A., Terentiev, A.G., Gerasimenko, M.N., and Cheshuyakov, S.A., J. Phys. Conf. Ser., 2020, vol. 1475, ID 012021.

    Article  CAS  Google Scholar 

  11. Konings, R.J.M., Comprehensive Nuclear Materials, vol. 3: Advanced Fuels. Fuel Cladding. Nuclear Fuel Performance. Modeling and Simulation, Amsterdam: Elsevier, 2012.

    Google Scholar 

  12. Hadibi-Olschewski, N., Glatz, J.P., Bokelund, H., and Leroy, M.J.F., J. Nucl. Mater., 1992, vol. 188, pp. 244–248.

    Article  ADS  CAS  Google Scholar 

  13. Kulyukhin, S.A., Rumer, I.A., Gorbacheva, M.P., and Bessonov, A.A., Radiochemistry, 2020, vol. 62, no. 2, pp. 177–188.

    Article  CAS  Google Scholar 

  14. Wang, W.C., Yung, Y.L., Lacis, A.A., Mo, T., and Hansen, J.E., Science, 1976, vol. 194, no. 4266, pp. 685–690.

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Khalil, M.A.K., Annu. Rev. Energy Environ., 1999, vol. 24, no. 1, pp. 645–661.

    Article  Google Scholar 

  16. Kulyukhin, S.A., Shadrin, A.Y., Voskresenskaya, Y.A., Bessonov, A.A., Ustinov, O.A., J. Radioanal. Nucl. Chem., 2015, vol. 304, no. 1, pp. 425–428.

    Article  CAS  Google Scholar 

  17. Ryabkov, D.V., Zil’berman, B.Ya., Mishina, N.E., Andreeva, E.V., Vodkailo, A.G., Shadrin, A.Yu., and Kostromin, K.V., Patent RU 2596816C1. 2015.

  18. Walker, D.D., Hobbs, D.T., Tiffany, J.B., Bibler, N.E., and Meisel, D., Nitrous Oxide Production from Radiolysis of Simulated High-Level Nuclear Waste Solutions, no. WSRC-MS-91-446; CONF-920307-78. the United States: Aiken, SC, 1992.

    Google Scholar 

  19. Kapteijn, F., Rodriguez-Mirasol, J., and Moulijn, J.A., Appl. Catal. B: Environmental., 1996, vol. 9, nos. 1–4, pp. 25–64.

    Article  CAS  Google Scholar 

  20. Konsolakis, M., ACS Catal., 2015, vol. 5, no. 11, pp. 6397–6421.

    Article  CAS  Google Scholar 

  21. Drozdov, A.A., Zlomanov, V.P., Mazo, G.N., and Spiridonov, F.M., Neorganicheskaya khimiya (Inorganic Chemistry), Tret’yakova, Yu.D., Ed., vol. 2: Moscow: Akademiya, 2004.

    Google Scholar 

  22. Mors, L.R., Edelstein, N.M., and Fuger, J., Actinide and Transactinide Elements, Dordrecht: Springer, 2008.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out using the equipment of the Center for Collective Use of Physical Research Methods of the Institute Physical Chemistry and Electrochemistry, Russian Academy of Sciences.

Funding

The study was carried out with financial support from the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Volgin.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated from Radiokhimiya, No. 6, pp. 512–517, December, 2023 https://doi.org/10.31857/S0033831123060023

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volgin, M.I., Kulyukhin, S.A. & Nevolin, Y.M. Comparative Analysis of UN and UO2 Oxidation in Air and Nitrogen Hemioxide. Radiochemistry 65, 628–633 (2023). https://doi.org/10.1134/S1066362223060024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362223060024

Keywords:

Navigation