Log in

A Note on Borsuk’s Problem in Minkowski Spaces

  • MATHEMATICS
  • Published:
Doklady Mathematics Aims and scope Submit manuscript

Abstract

In 1993, Kahn and Kalai famously constructed a sequence of finite sets in d-dimensional Euclidean spaces that cannot be partitioned into less than \({{(1.203 \ldots + o(1))}^{{\sqrt d }}}\) parts of smaller diameter. Their method works not only for the Euclidean, but for all \({{\ell }_{p}}\)-spaces as well. In this short note, we observe that the larger the value of p, the stronger this construction becomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. R. C. Baker, G. Harman, and J. Pintz, “The difference between consecutive primes II,” Proc. London Math. Soc. (3), 83 (3), 532–562 (2001).

  2. L. I. Bogolubsky and A. M. Raigorodskii, “On bounds in Borsuk’s problem,” Tr. Mosk. Fiz.-Tekh. Inst. 11 (3), 20–49 (2019).

    Google Scholar 

  3. V. G. Boltyanskii and I. T. Gohberg, Results and Problems in Combinatorial Geometry (Nauka, Moscow, 1965; Cambridge Univ. Press, Cambridge, 1985).

  4. A. Bondarenko, “On Borsuk’s conjecture for two-distance sets,” Discrete Comput. Geom. 51 (3), 509–515 (2014).

    Article  MathSciNet  Google Scholar 

  5. K. Borsuk, “Drei Sätze über die n-dimensionale euklidische Sphäre,” Fundam. Math. 20, 177–190 (1933).

    Article  Google Scholar 

  6. J. Bourgain and J. Lindenstrauss, “On covering a set in \({{\mathbb{R}}^{d}}\) by balls of the same diameter,” Geometric Aspects of Functional Analysis, Ed. by J. Lindenstrauss and V. Milman, Lecture Notes in Mathematics (Springer, Berlin, 1991), Vol. 1469, pp. 138–144.

  7. P. Frankl and R. M. Wilson, “Intersection theorems with geometric consequences,” Combinatorica 1 (4), 357–368 (1981).

    Article  MathSciNet  Google Scholar 

  8. B. Grünbaum, “Borsuk’s partition conjecture in Minkowski planes,” Bull. Res. Council Israel Sect. F 7, 25–30 (1957).

    MathSciNet  Google Scholar 

  9. T. Jenrich and A. E. Brouwer, “A 64-dimensional counterexample to Borsuk’s conjecture,” Electron. J. Combin. 21 (4), P4.29 (2014).

  10. J. Kahn and G. Kalai, “A counterexample to Borsuk’s conjecture,” Bull. Am. Math. Soc. 29 (1), 60–62 (1993).

    Article  MathSciNet  Google Scholar 

  11. M. Lassak, “An estimate concerning Borsuk’s partition problem,” Bull. Acad. Polon. Sci. Ser. Math. 30, 449–451 (1982).

    MathSciNet  Google Scholar 

  12. A. Passuello, “Semidefinite programming in combinatorial optimization with applications to coding theory and geometry,” Thesis (2013). https://theses.hal.science/tel-00948055

  13. A. M. Raigorodskii, “Around Borsuk’s conjecture,” J. Math. Sci. 154 (4), 604–623 (2008).

    Article  MathSciNet  Google Scholar 

  14. A. M. Raigorodskii, “Coloring distance graphs and graphs of diameters,” Thirty Essays on Geometric Graph Theory, Ed. by J. Pach (Springer, Berlin, 2013), pp. 429–460.

    Google Scholar 

  15. A. M. Raigorodskii, “On a bound in Borsuk’s problem,” Russ. Math. Surv. 54 (2), 453–454 (1999).

    Article  MathSciNet  Google Scholar 

  16. A. M. Raigorodskii, “On the dimension in Borsuk’s problem,” Russ. Math. Surv. 52 (6), 1324–1325 (1997).

    Article  Google Scholar 

  17. C. A. Rogers and C. Zong, “Covering convex bodies by translates of convex bodies,” Mathematika 44 (1), 215–218 (1997).

    Article  MathSciNet  Google Scholar 

  18. O. Schramm, “Illuminating sets of constant width,” Mathematika 35, 180–189 (1988).

    Article  MathSciNet  Google Scholar 

  19. K. J. Swanepoel, “Combinatorial distance geometry in normed spaces,” New Trends in Intuitive Geometry (Springer, Berlin, 2018), pp. 407–458.

    Google Scholar 

  20. J. Wang and F. Xue, “Borsuk’s partition problem in four-dimensional \({{\ell }_{p}}\) space,” Preprint ar**v:2206.15277 (2022).

  21. B. Weissbach, “Sets with large Borsuk number,” Beiträge Alg. Geom. 41, 417–423 (2000).

    Google Scholar 

  22. L. Yu and C. Zong, “On the blocking number and the covering number of a convex body,” Adv. Geom. 9 (1), 13–29 (2009).

    Article  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Olga Kostina for the helpful discussion. The first author is supported by the grant NSh-775.2022.1.1. The second author is supported by ERC Advanced Grant ‘GeoScape’ No. 882971.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Raigorodskii or A. Sagdeev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raigorodskii, A.M., Sagdeev, A. A Note on Borsuk’s Problem in Minkowski Spaces. Dokl. Math. 109, 80–83 (2024). https://doi.org/10.1134/S1064562424701849

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064562424701849

Navigation