Log in

Map** the Petrogypsic Horizon Occurrence Probability in the Sahara Desert Using Predictive Models

  • GENESIS AND GEOGRAPHY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The presence of the petrogypsic horizon is an impediment to develo** agriculture in the Sahara. It hinders the soil’s ability to store water and root development of crops. The petrogypsic horizon is commonly difficult to map due to its location either on the surface or at depth. This study used logistic regression-kriging and logistic regression models to map the petrogypsic horizon occurrence probability using 466 observations over an area of 22 573 ha in the Sahara Desert of Algeria. The models included remote sensing indices and topographic variables as environmental covariates. The accuracy of models was verified by the area under the curve (AUC). A binary map was produced by applying a threshold of 0.7 on the most performant probability map. Our results showed that logistic regression-kriging performed the best (AUC = 0.88), due to the consideration of residual spatial correlation in the model. The grain size index covariate was the most relevant compared to topographic variables, which showed the usefulness of spectral indices. Based on the binary map, the risk associated with the presence of the petrogypsic horizon was limited, representing 26% of the study area. In the Sahara Desert, though the petrogypsic horizon was weakly correlated with the tested environmental covariates, the use of satellite images and residual autocorrelation in a predictive modelling approach improved the map** and thus risk assessment of the petrogypsic horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. Abdesselem and M. L. Timechbache, “Sur la nature de la croûte gypseuse dite “deb deb” dans les palmeraies de l’ouest des Ziban,” Alger. J. Arid Environ. 6 (1), 87–95 (2016).

    Google Scholar 

  2. M. E. Angelini and G. B. M. Heuvelink, “Including spatial correlation in structural equation modelling of soil properties,” Spat. Stat. 25, 35–51 (2018). https://doi.org/10.1016/j.spasta.2018.04.003

    Article  Google Scholar 

  3. T. Assami and B. Hamdi-Aïssa, “Digital map** of soil classes in Algeria—a comparison of methods,” Geoderma Reg. 16, e00215 (2019). https://doi.org/10.1016/j.geodrs.2019.e00215

    Article  Google Scholar 

  4. D. Badía, C. Martí, J. M. Aznar, and J. León, “Influence of slope and parent rock on soil genesis and classification in semiarid mountainous environments,” Geoderma 193, 13–21 (2013). https://doi.org/10.1016/j.geoderma.2012.10.020

    Article  CAS  Google Scholar 

  5. D. E. Beaudette, R. A. Dahlgren, and A. T. O’Geen, “Terrain-shape indices for modeling soil moisture dynamics,” Soil Sci. Soc. Am. J. 77, 1696–1710 (2013). https://doi.org/10.2136/sssaj2013.02.0048

    Article  CAS  Google Scholar 

  6. T. F. A. Bishop and A.B. McBratney, “A comparison of prediction methods for the creation of field-extent soil property maps,” Geoderma 103 (1–2), 149–160 (2001). https://doi.org/10.1016/S0016-7061(01)00074-X

    Article  Google Scholar 

  7. J. G. Bockheim, “Gypsic and petrogypsic horizons,” in Soil Geography of the USA A Diagnostic-Horizon Approach, Ed. by J. G. Bockheim (Springer, Cham, 2014), pp. 179–188. https://doi.org/10.1007/978-3-319-06668-4_17

  8. T. G. Boyadgiev and W. H. Verheye, “Contribution to a utilitarian classification of gypsiferous soil,” Geoderma 74 (3–4), 321–338 (1996). https://doi.org/10.1016/S0016-7061(96)00074-2

    Article  Google Scholar 

  9. S. Casby-Horton, J. Herrero, and N.A. Rolong, “Gypsum soils-their morphology, classification, function, and landscapes,” in Advances in Agronomy, Ed. by L. D. Sparks (Elsevier, Amsterdam, 2015), Vol. 130, pp. 231–290. https://doi.org/10.1016/bs.agron.2014.10.002

  10. C. Chagumaira, J. G. Chimungu, D. Gashu, P. C. Nalivata, M. R. Broadley, A. E. Milne, and R. M. Lark, “Communicating uncertainties in spatial predictions of grain micronutrient concentration,” Geosci. Commun. 4 (2), 245–265 (2021). https://doi.org/10.5194/gc-4-245-2021

    Article  Google Scholar 

  11. F. Collard, B. Kempen, G. B. M. Heuvelink, N.P. A. Saby, A. C. Richer de Forges, S. Lehmann, P. Nehlig, and D. Arrouays, “Refining a reconnaissance soil map by calibrating regression models with data from the same map (Normandy, France),” Geoderma Reg. 1, 21–30 (2014). https://doi.org/10.1016/j.geodrs.2014.07.001

    Article  Google Scholar 

  12. R. G. Congalton, “A review of assessing the accuracy of classifications of remotely sensed data,” Remote Sens. Environ. 37, 35–46 (1991). https://doi.org/10.1016/0034-4257(91)90048-B

    Article  Google Scholar 

  13. O. Conrad, B. Bechtel, M. Bock, H. Dietrich, E. Fischer, L. Gerlitz, J. Wehberg, V. Wichmann, and J. Böhner, “System for automated Geoscientific analyses (SAGA) v. 2.1.4,” Geosci. Model Dev. 8, 1991–2007 (2015). https://doi.org/10.5194/gmd-8-1991-2015

    Article  Google Scholar 

  14. A. E. K. Douaoui, H. Nicolas, and C. Walter, “Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data,” Geoderma 13 (4), 217–230 (2006). https://doi.org/10.1016/j.geoderma.2005.10.009

    Article  Google Scholar 

  15. H. Eswaran and G. Zi-Tong, “Properties, genesis, classification, and distribution of soils with gypsum,” in Occurrence, Characteristics, and Genesis of Carbonate, Gypsum, and Silica Accumulations in Soils, Ed. by W. D. Nettleton (Soil Sci. Soc. Am. Inc., Madison, 1991), pp. 89–119. https://doi.org/10.2136/sssaspecpub26.c6

  16. D. M. Evans and A. E. Hartemink, “Digital soil map** of a red clay subsoil covered by loess,” Geoderma 230–231, 296–304 (2014). https://doi.org/10.1016/j.geoderma.2014.03.013

    Article  Google Scholar 

  17. M. Faci and S. E. Benziouche, “Contribution to monitoring the influence of air temperature on some phenological stages of the date palm (cultivar ‘Deglet Nour’) in Biskra,” J. Saudi Soc. Agric. Sci. 20 (4), 248–256 (2021). https://doi.org/10.1016/j.jssas.2021.02.004

    Article  Google Scholar 

  18. T. G. Farr, P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank, and D. Alsdorf, “The shuttle radar topography mission,” Rev. Geophys. 45 (2), RG2004 (2007). https://doi.org/10.1029/2005RG000183

    Article  Google Scholar 

  19. M. Fressard, Y. Thiery, and O. Maquaire, “Which data for quantitative landslide susceptibility map** at operational scale? Case study of the Pays d’Auge plateau hillslopes (Normandy, France),” Nat. Hazard Earth Syst. Sci. 14, 569–588 (2014). https://doi.org/10.5194/nhess-14-569-2014

    Article  Google Scholar 

  20. G. Gastaldi, B. Minasny, and A. B. McBratney, “Map** the occurrence and thickness of soil horizons within soil profiles,” in Digital Soil Assessments and Beyond, Ed. by B. Minasny et al. (Taylor & Francis Group, London, 2012), pp. 145–148. https://doi.org/10.1201/b12728

  21. S. Gengler and P. Bogaert, “Bayesian data fusion applied to soil drainage classes spatial map**,” Math. Geosci. 48, 79–88 (2016). https://doi.org/10.1007/s11004-015-9585-y

    Article  Google Scholar 

  22. D. Goksuluk, S. Korkmaz, G. Zararsiz, and A. E. Karaağaoğlu, “easyROC: an interactive web-tool for ROC curve analysis using R language environment,” R J. 8 (2), 213–230 (2016).

    Article  Google Scholar 

  23. R. Goossens and E. Van Ranst, “The use of remote sensing to map gypsiferous soils in the Ismailia Province (Egypt),” Geoderma 87 (1–2), 47–56 (1998). https://doi.org/10.1016/S0016-7061(98)00069-X

    Article  Google Scholar 

  24. S. Grunwald, “Multi-criteria characterization of recent digital soil map** and modeling approaches,” Geoderma 152 (3–4), 195–207 (2009). https://doi.org/10.1016/j.geoderma.2009.06.003

    Article  Google Scholar 

  25. T. Hengl, G. B. M. Heuvelink, and D. G. Rossiter, “About regression-kriging: from equations to case studies,” Comput. Geosci. 33 (10), 1301–1315 (2007). https://doi.org/10.1016/j.cageo.2007.05.001

    Article  Google Scholar 

  26. T. Hengl, N. Toomanian, H. I. Reuter, and M. J. Malakouti, “Methods to interpolate soil categorical variables from profile observation: lessons from Iran,” Geoderma 140 (4), 417–427 (2007). https://doi.org/10.1016/j.geoderma.2007.04.022

    Article  Google Scholar 

  27. T. Hengl, B. Kempen, G. B. M. Heuvelink, and B. Malone, Global Soil Information Facilities (GSIF), R Package Version 0.5–5 (ISRIC—World Soil Information, Wageningen, 2019). http://gsif.r-forge.r-project.org/.

  28. J. Herrero, “Revisiting the definitions of gypsic and petrogypsic horizons in Soil Taxonomy and World Reference Base for Soil Resources,” Geoderma 120, 1–5 (2004). https://doi.org/10.1016/j.geoderma.2003.07.004

    Article  CAS  Google Scholar 

  29. J. Herrero and R. E. Zartman, “Established soil science methods can benefit the construction industry when determining gypsum content,” Cleaner Eng. Technol. 4, 100154 (2021). https://doi.org/10.1016/j.clet.2021.100154

    Article  Google Scholar 

  30. G. B. M. Heuvelink and R. Webster, “Spatial statistics and soil map**: a blossoming partnership under pressure,” Spat. Stat. 50, 100639 (2022). https://doi.org/10.1016/j.spasta.2022.100639

    Article  Google Scholar 

  31. IUSS Working Group WRB, World Reference Base for Soil Resources 2014. Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Report No. 106 (FAO, Rome, 2015). https://www.fao.org/3/i3794en/I3794en.pdf.

  32. A. Jafari, P. A. Finke, J. Vande Wauw, S. Ayoubi, and H. Khademi, “Spatial prediction of USDA- great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types,” Eur. J. Soil Sci. 63, 284–298 (2012). https://doi.org/10.1111/j.1365-2389.2012.01425.x

    Article  Google Scholar 

  33. H. Keskin and S. Grunwald, “Regression kriging as a workhorse in the digital soil mapper’s toolbox,” Geoderma 326, 22–41 (2018). https://doi.org/10.1016/j.geoderma.2018.04.004

    Article  Google Scholar 

  34. J. Kim, C. Song, S. Lee, H-W. Jo, E. Park, H. Yu, S. Cha, J. An, Y. Son, A. Khamzina, and W-K. Lee, “Identifying potential vegetation establishment areas on the dried Aral Sea floor using satellite images,” Land Degrad. Dev. 31, 2749–2762 (2020). https://doi.org/10.1002/ldr.3642

    Article  Google Scholar 

  35. T. V. Korolyuk and S. V. Ovechkin, “Approaches to modernization of the state soil map of Russia on the basis of the methods of digital soil map**,” Eurasian Soil Sci. 43, 488–498 (2010). https://doi.org/10.1134/S1064229310050029

    Article  Google Scholar 

  36. M. H. Kouider, I. E. Nezli, and B. Hamdi-Aissa, “The use of spectral responses of surface in the discrimination of soils surface by remote sensing,” Energy Procedia 119, 622–631 (2017). https://doi.org/10.1016/j.egypro.2017.07.088

    Article  Google Scholar 

  37. M. Kuhn, “Building predictive models in R using the caret package,” J. Stat. Software 28 (5), 1–26 (2008). https://doi.org/10.18637/jss.v028.i05

    Article  Google Scholar 

  38. P. Lagacherie and A.B. McBratney, “Spatial soil information systems and spatial soil inference systems: perspectives for digital soil map**,” in Developments in Soil Science, Ed. by P. Lagacherie et al. (Elsevier, Amsterdam, 2006), Vol. 31, pp. 3–22. https://doi.org/10.1016/S0166-2481(06)31001-X

  39. P. W. Lane, “Generalized linear models in soil science,” Eur. J. Soil Sci. 53, 241–251 (2002). https://doi.org/10.1046/j.1365-2389.2002.00440.x

    Article  Google Scholar 

  40. B. Lemercier, P. Lagacherie, J. Amelin, J. Sauter, P. Pichelin, A. C. Richer-de-Forges, and D. Arrouays, “Multiscale evaluations of global, national and regional digital soil map** products in France,” Geoderma 425, (2022). https://doi.org/10.1016/j.geoderma.2022.116052

  41. Y. P. Lin, B. Y. Cheng, H. J. Chu, T. K. Chang, and H. L. Yu, “Assessing how heavy metal pollution and human activity are related by using logistic regression and kriging methods,” Geoderma 163 (3–4), 275–282 (2011). https://doi.org/10.1016/j.geoderma.2011.05.004

    Article  CAS  Google Scholar 

  42. J. Machín and A. Navas, “Spatial analysis of gypsiferous soils in the Zaragoza province (Spain), using GIS as an aid to conservation,” Geoderma 87 (1–2), 57–66 (1998). https://doi.org/10.1016/S0016-7061(98)00071-8

    Article  Google Scholar 

  43. S. Manel, H. C. Williams, and S. Ormerod, “Evaluating presence–absence models in ecology: the need to account for prevalence,” J. Appl. Ecol. 38, 921–931 (2001). https://doi.org/10.1046/j.1365-2664.2001.00647.x

    Article  Google Scholar 

  44. B.A. Marsman and J. J. de Gruijter, Quality of Soil Maps. A Comparison of Survey Methods in a Sandy Area, Soil Survey Papers, 15 (Netherlands Soil Survey Institute, Wageningen, 1986). https://edepot.wur.nl/ 302705

    Google Scholar 

  45. J. F. Martínez-Montoya, J. Herrero, and M. A. Casterad, “Map** categories of gypseous lands in Mexico and Spain using Landsat imagery,” J. Arid Environ. 74 (8), 978–986 (2010). https://doi.org/10.1016/j.jaridenv.2010.01.011

    Article  Google Scholar 

  46. H. Midi, S. K. Sarka, and S. Rana, “Collinearity diagnostics of binary logistic regression model,” J. Interdiscip. Math. 13 (3), 253–267 (2010). https://doi.org/10.1080/09720502.2010.10700699

    Article  Google Scholar 

  47. B. Minasny and A. B. McBratney, “Digital soil map**: a brief history and some lessons,” Geoderma 264, 301–311 (2016). https://doi.org/10.1016/j.geoderma.2015.07.017

    Article  Google Scholar 

  48. I. D. Moore, R. B. Grayson, and A. R. Ladson, “Digital terrain modelling: a review of hydrological, geomorphological, and biological applications,” Hydrol. Processes 5, 3–30 (1991). https://doi.org/10.1002/hyp.3360050103

    Article  Google Scholar 

  49. M. Neyestani, F. Sarmadian, A. Jafari, A. Keshavarzi, and A. Sharififar, “Digital map** of soil classes using spatial extrapolation with imbalanced data,” Geoderma Reg. 26, e00422 (2021). https://doi.org/10.1016/j.geodrs.2021.e00422

    Article  Google Scholar 

  50. S. J. Nield, J. L. Boettinger, and R. D. Ramsey, “Digitally map** gypsic and natric soil areas using Landsat ETM data,” Soil Sci. Soc. Am. J. 71, 245–252 (2007). https://doi.org/10.2136/sssaj2006-0049

    Article  CAS  Google Scholar 

  51. N. J. Perkins and E. F. Schisterman, “The inconsistency of “optimal” cutpoints obtained using two criteria based on the receiver operating characteristic curve,” Am. J. Epidemiol. 163, 670–675 (2006). https://doi.org/10.1093/aje/kwj063

    Article  Google Scholar 

  52. A. C. Richer-de-Forges, N. P. A. Saby, V. L. Mulder, B. Laroche, and D. Arrouays, “Probability map** of iron pan presence in sandy podzols in South-West France, using digital soil map**,” Geoderma Reg. 9, 39–46 (2017). https://doi.org/10.1016/j.geodrs.2016.12.005

    Article  Google Scholar 

  53. S. J. Riley, S. D. DeGloria, and R. Elliot, “A terrain ruggedness index that quantifies topo graphic heterogeneity,” Intermt. J. Sci. 5, 23–27 (1999).

    Google Scholar 

  54. RStudio Team, RStudio: Integrated Development for R, Version 1.1.453 (RStudio, Inc Boston, 2016).

  55. I. Y. Savin and S. V. Ovechkin, “On the updating of medium-scale soil maps,” Eurasian Soil Sci. 47, 987–994 (2014). https://doi.org/10.1134/S1064229314100111

    Article  Google Scholar 

  56. I. Y. Savin, A. V. Zhogolev, and E. Y. Prudnikova, “Modern trends and problems of soil map**,” Eurasian Soil Sci. 52, 471–480 (2019). https://doi.org/10.1134/S1064229319050107

    Article  Google Scholar 

  57. E. F. Schisterman, D. Faraggi, B. Reiser, and J. Hu, “Youden Index and the optimal threshold for markers with mass at zero,” Stat. Med. 27, 297–315 (2008). https://doi.org/10.1002/sim.2993

    Article  Google Scholar 

  58. P. A. Shary, “Environmental variables in predictive soil map**: a review,” Eurasian Soil Sci. 56, 247–259 (2023). https://doi.org/10.1134/S1064229322602384

    Article  Google Scholar 

  59. C. Shepard, M. G. Schaap, J. Chorover, and C. Rasmussen, “Understanding critical zone evolution through predicting the three-dimensional soil chemical properties of a small forested catchment,” Soil Sci. Soc. Am. J. 82, 1538–1550 (2018). https://doi.org/10.2136/sssaj2018.03.0119

    Article  CAS  Google Scholar 

  60. Soil Survey Staff, Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys, Agriculture Handbook No. 436, 2nd Ed. (USDA–NRCS, Washington, DC, 1999).

    Google Scholar 

  61. L. Steinbuch, D. J. Brus, and G. B. M. Heuvelink, “Map** the probability of ripened subsoils using Bayesian logistic regression with informative priors,” Geoderma 316, 56–69 (2018). https://doi.org/10.1016/j.geoderma.2017.12.010

    Article  Google Scholar 

  62. R. Taghizadeh-Mehrjardi, K. Schmidt, K. Eftekhari, T. Behrens, M. Jamshidi, N. Davatgar, N, Toomanian, and T. Scholten, “Synthetic resampling strategies and machine learning for digital soil map** in Iran,” Eur. J. Soil Sci. 71, 352–368 (2020). https://doi.org/10.1111/ejss.12893

    Article  Google Scholar 

  63. W. H. Verheye and T. G. Boyadgiev, “Evaluating the land use potential of gypsiferous soils from field pedogenic characteristics,” Soil Use Manage. 13, 97–103 (1997). https://doi.org/10.1111/j.1475-2743.1997.tb00565.x

    Article  Google Scholar 

  64. A. M. J.-C. Wadoux, B. Minasny, and A. B. McBratney, “Machine learning for digital soil map**: applications, challenges and suggested solutions,” Earth-Sci Rev. 210, 103359 (2020). https://doi.org/10.1016/j.earscirev.2020.103359

    Article  Google Scholar 

  65. R. Webster and A.B. McBratney, “On the Akaike Information Criterion for choosing models for variograms of soil properties,” J. Soil Sci. 40, 493–496 (1989). https://doi.org/10.1111/j.1365-2389.1989.tb01291.x

    Article  Google Scholar 

  66. J. **ao, Y. Shen, R. Tateishi, and W. Bayaer, “Development of topsoil grain size index for monitoring desertification in arid land using remote sensing,” Int J. Remote Sens. 27 (12), 2411–2422 (2006). https://doi.org/10.1080/01431160600554363

    Article  Google Scholar 

  67. I. A. Yamnova and D. L. Golovanov, “Morphology and genesis of gypsum pedofeatures and their representation on detailed soil maps of arid regions,” Eurasian Soil Sci. 43, 848–857 (2010). https://doi.org/10.1134/S1064229310080028

    Article  Google Scholar 

  68. X. Yang, A. K. Skidmore, D. R. Melick, Z. Zhou, and J. Xu, “Map** non-wood forest product (matsutake mushrooms) using logistic regression and a GIS expert system,” Ecol. Model. 198 (1–2), 208–218 (2006). https://doi.org/10.1016/j.ecolmodel.2006.04.011

    Article  Google Scholar 

  69. Z. Zhang, “Variable selection with stepwise and best subset approaches,” Ann. Transl. Med. 4 (7), 1–6 (2016). https://doi.org/10.21037/atm.2016.03.35

    Article  CAS  Google Scholar 

  70. G. Zhang, F. Liu, and X. Song, “Recent progress and future prospect of digital soil map**: A review,” J. Integr. Agric. 16 (12), 2871–2885 (2017). https://doi.org/10.1016/S2095-3119(17)61762-3

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the National Hydraulic Resources Agency (ANRH) for providing valuable documents related to the study area. Also, we are grateful to the local farmers who accompanied us in the field and provided valuable insights.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Assami.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assami, T., Chenchouni, H. & Hadj-Miloud, S. Map** the Petrogypsic Horizon Occurrence Probability in the Sahara Desert Using Predictive Models. Eurasian Soil Sc. 57, 551–561 (2024). https://doi.org/10.1134/S1064229323601920

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323601920

Keywords:

Navigation