Log in

Microbial Metabolic Quotient is a Dynamic Indicator of Soil Health: Trends, Implications and Perspectives (Review)

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

There is growing concern about the negative impact of massive fertilizer use on soil health, threatening the environmental quality and sustainability of global agricultural production. Microbial metabolic quotient (qCO2) is an important soil health indicator, used to measure microbial C use efficiency (CUE). Soil carbon sequestration can be enhanced by increasing soil microbial biomass and CUE, ultimately improving soil health. However, the effects of long-term fertilization of agricultural soils on qCO2 variability remain unclear. This review provides a deep insight into the concepts and factors that influence qCO2 stability. Soil qCO2 depends on nutrient availability, and long-term fertilization increases microbial CUE in terms of decreased qCO2 values. Therefore, it is necessary to identify several theoretical advances and practical implications of qCO2 for microbial control of soil carbon cycling. In addition, qCO2 can be used as a tool for ecosystem monitoring and assessment in remediation programs due to its low-cost measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. N. Ashraf, C. Hu, L. Wu, Y. Duan, W. Zhang, T. Aziz, A. Cai, M. M. Abrar, and M. Xu, “Soil and microbial biomass stoichiometry regulate soil organic carbon and nitrogen mineralization in rice-wheat rotation subjected to long-term fertilization,” J. Soils Sediments 20, 3103–3113 (2020). https://doi.org/10.1007/s11368-020-02642-y

    Article  Google Scholar 

  2. N. D. Ananyeva, K. V. Ivashchenko, and S. V. Sushko, “Microbial indicators of urban soils and their role in the assessment of ecosystem services: a review,” Eurasian Soil Sci. 54, 1517–1531 (2021). https://doi.org/10.1134/S1064229321100033

    Article  Google Scholar 

  3. N. D. Ananyeva, S. V. Sushko, K. V. Ivashchenko, et al., “Soil microbial respiration in subtaiga and forest-steppe ecosystems of European Russia: field and laboratory approaches,” Eurasian Soil Sci. 53, 1492–1501 (2020). https://doi.org/10.1134/S106422932010004X

    Article  Google Scholar 

  4. K. Alef and P. Nannipieri, Methods in Applied Soil Microbiology and Biochemistry (Academic Press, 1995).

    Google Scholar 

  5. C. R. Alvarez, R. Alvarez, M. S. Grigera, and R.S. Lavado, “Associations between organic matter fractions and the active soil microbial,” Soil Biol. Biochem. 30 (6), 767–773 (1998).

    Article  Google Scholar 

  6. T. H. Anderson and K. H. Domsch, “Soil microbial biomass: the eco-physiological approach,” Soil Biol. Biochem. 42 (12), 2039–2043 (2010).

    Article  Google Scholar 

  7. T. H. Anderson, Physiological Analysis of Microbial Communities in Soil: Applications and Limitations (John Wiley and Sons Ltd, 1994), pp. 67–76.

    Google Scholar 

  8. T. H. Anderson, and K. H. Domsch, “Maintenance carbon requirements of actively-metabolizing microbial populations under in situ conditions,” Soil Biol. Biochem. 17 (2), 197–203 (1985).

    Article  Google Scholar 

  9. T. H. Anderson, “Microbial eco-physiological indicators to asses soil quality,” Agric Ecosyst. Environ. 98 (3), 285–293 (2003).

    Article  Google Scholar 

  10. T. H. Anderson and K. H. Domsch, “The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils,” Soil Biol. Biochem. 25 (3), 393–395 (1993).

    Article  Google Scholar 

  11. T. H. Anderson and K. H. Domsch, “Ratios of microbial biomass carbon to total organic carbon in arable soils,” Soil Biol. Biochem. 21 (4), 471–479 (1989).

    Article  Google Scholar 

  12. T. H. Anderson and K. H. Domsch, “Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different crop** histories,” Soil Biol. Biochem. 22 (2), 251–255 (1990).

    Article  Google Scholar 

  13. S. Braman, M. Tenuta, and M. H. Entz, “Selected soil biological parameters measured in the 19th year of a long term organic-conventional comparison study in Canada,” Agric. Ecosyst. Environ. 233, 343–351 (2016).

    Article  Google Scholar 

  14. S. Braman, M. Tenuta, and M. H. Entz, “Selected soil biological parameters measured in the 19th year of a long term organic-conventional comparison study in Canada,” Agric. Ecosyst. Environ. 233, 343-351 (2016).

    Article  Google Scholar 

  15. F. Bastida, A. Zsolnay, T. Hernández, and C. García, “Past, present and future of soil quality indices: a biological perspective,” Geoderma 147 (4), 159–171 (2008).

    Article  Google Scholar 

  16. E. V. Blagodatskaya and Y. H. Anderson, “Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils,” Soil Biol. Biochem. 30 (10), 1269–1274 (1998).

    Article  Google Scholar 

  17. A. Cai, H. Xu, X. Shao, P. Zhu, W. Zhang, M. Xu, and D. V. Murphy, “Carbon and nitrogen mineralization in relation to soil particle-size fractions after 32 years of chemical and manure application in a continuous maize crop** system,” PLoS One 11 (3), 1–14 (2016).

    Google Scholar 

  18. J. Chen, D. Chen, Q. Xu, J. J. Fuhrmann, L. Li, G. Pan, Y. Li, H. Qin, C. Liang, and X. Sun, “Organic carbon quality, composition of main microbial groups, enzyme activities, and temperature sensitivity of soil respiration of an acid paddy soil treated with biochar,” Biol. Fertil. Soils 55 (2), 185–197 (2019).

    Article  Google Scholar 

  19. M. M. Ding, W. M. Yi, L. Y. Liao, R. Martens, and H. Insam, “Effect of afforestation on microbial biomass and activity in soils of tropical China,” Soil Biol. Biochem. 24 (9), 865–872 (1992).

    Article  Google Scholar 

  20. T.H. Anderson and K.H. Domsch, “The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils,” Soil Biol. Biochem. 25 (3), 393–395 (1993).

    Article  Google Scholar 

  21. R. Dinesh, S. G. Chaudhuri, A. N. Ganeshamurthy, and C. Dey, “Changes in soil microbial indices and their relationships following deforestation and cultivation in wet tropical forests,” Appl. Soil Ecol. 24 (1), 17–26 (2003).

    Article  Google Scholar 

  22. O. Dilly, “Microbial energetics in soils,” in Microorganisms in Soils: Roles in Genesis and Functions. Soil Biology, Ed. by A. Varma and F. Buscot (Springer, Berlin, Heidelberg, 2005). https://doi.org/10.1007/3-540-26609-7_6

  23. C. Emmerling, T. Udelhoven, and D. Schröder, “Response of soil microbial biomass and activity to agricultural de-intensification over a 10 year period,” Soil Biol. Biochem. 33 (15), 2105–2114 (2001).

    Article  Google Scholar 

  24. J. K. Friedel, J. C. Munch, and W. R. Fischer, “Soil microbial properties and the assessment of available soil organic matter in a haplic luvisol after several years of different cultivation and crop rotation,” Soil Biol. Biochem. 28 (5), 479–488 (1996).

    Article  Google Scholar 

  25. N. Fierer, J. L. Morse, S. T. Berthrong, and R. B. Jackson, “Environmental controls on the landscape-scale biogeography of stream bacterial communities,” Ecology 88 (9), 2162–2173 (2007).

    Article  Google Scholar 

  26. A. J. Franzluebbers, R. L. Haney, C.W. Honeycutt, M. A. Arshad, H. H. Schomberg, and F. M. Hons, “Climatic influences on active fractions of soil organic matter,” Soil Biol. Biochem. 33 (8), 1103–1111 (2001).

    Article  Google Scholar 

  27. A. Fließbach, H. Oberholzer, L. Gunst, and P. Ma, “Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming,” Agric. Ecosyst. Environ. 118 (1–4), 273–284 (2007).

    Article  Google Scholar 

  28. A. Fließbach, R. Martens, and H. H. Reber, “Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge,” Soil Biol. Biochem. 26 (9), 1201–1205 (1994).

    Article  Google Scholar 

  29. M. F. Fauci and R. P. Dick, “Soil microbial dynamics: short- and long-term effects of inorganic and organic nitrogen,” Soil Sci. Soc. Am. J. 58 (3), 801 (2010).

    Article  Google Scholar 

  30. W. H. Hartman and C. J. Richardson, “Differential nutrient limitation of soil microbial biomass and metabolic quotients (qCO2): is there a biological stoichiometry of soil microbes?,” PLoS One 8 (3), e57127 (2013).

    Article  Google Scholar 

  31. J. Hou, F.A. Dijkstra, X. Zhang, C. Wang, X. Lü, P. Wang, X. Han, and W. Cheng, “Aridity thresholds of soil microbial metabolic indices along a 3,200 km transect across arid and semi-arid regions in Northern China,” PeerJ 7, e6712 (2019).

    Article  Google Scholar 

  32. S. Heinze and J. Raupp, “Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture,” Plant Soil 328 (1), 203–215 (2010).

    Article  Google Scholar 

  33. J. Hou, F. A. Dijkstra, X. Zhang, C. Wang, X. Lü, P. Wang, X. Han, and W. Cheng, “Aridity thresholds of soil microbial metabolic indices along a 3,200 km transect across arid and semi-arid regions in Northern China,” PeerJ 7, e6712 (2019).

    Article  Google Scholar 

  34. H. Insam and K. H. Domsch, “Relationship between soil organic carbon and microbial of reclamation sites,” Microb. Ecol. 15 (2), 177–188 (1988).

    Article  Google Scholar 

  35. H. Insam and K. Haselwandter, “Metabolic quotient of the soil microflora in relation to plant succession,” Oecologia 79 (2), 174–178 (1989).

    Article  Google Scholar 

  36. H. Insam, T. C. Hutchinson, and H. H, “Effects of heavy metal stress on the metabolic quotient of the soil microflora,” Soil Biol. Biochem. 28 (5), 691–694 (1996).

    Article  Google Scholar 

  37. H. Insam, C. C. Mitchell, and J. F. Dormaar, “Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three ultisols,” Soil Biol. Biochem. 23 (5), 459–464 (1991).

    Article  Google Scholar 

  38. I. A. Janssens, W. Dieleman, S. Luyssaert, J. A. Subke, M. Reichstein, R. Ceulemans, P. Ciais, A. J. Dolman, J. Grace, and G. Matteucci, “Reduction of forest soil respiration in response to nitrogen deposition,” Nat. Geosci. 3 (5), 315–322 (2010).

    Article  Google Scholar 

  39. Y. Li, Y. Liu, Y. Wang, L. Niu, X. Xu, and Y. Tian, “Interactive effects of soil temperature and moisture on soil N mineralization in a Stipa krylovii grassland in Inner Mongolia, China,” J. Arid Land 6 (5), 571–580 (2014).

    Article  Google Scholar 

  40. Y. Liu, H. Zang, T. Ge, J. Bai, S. Lu, P. Zhou, P. Peng, O. Shibistova, Z. Zhu, and J. Wu, “Intensive fertilization (N, P, K, Ca, and S) decreases organic matter decomposition in paddy soil,” Appl. Soil Ecol. 127 (4), 51–57 (2018).

    Article  Google Scholar 

  41. M. Llorente and M. B. Turrión, “Microbiological parameters as indicators of soil organic carbon dynamics in relation to different land use management,” Eur. J. For. Res. 129 (1), 73–81 (2010).

    Article  Google Scholar 

  42. F. Magnani, M. Mencuccini, M. Borghetti, P. Berbigier, F. Berninger, S. Delzon, A. Grelle, P. Hari, P G. Jarvis, and P. Kolari, “The human footprint in the carbon cycle of temperate and boreal forests,” Nature 447 (7146), 848–850 (2007).

    Article  Google Scholar 

  43. S. Manzoni, P. Taylor, A. Richter, A. Porporato, and G. I. Ågren, “Environmental and stoichiometric controls on microbial carbon-use efficiency in soils,” New Phytol. 196 (1), 79–91 (2012).

    Article  Google Scholar 

  44. O. D. J. Munch and D. Kiel, “Ratios between estimates of microbial biomass content and microbial activity in soils,” Biol. Fertil. Soils 27 (4), 374–379 (1998).

    Article  Google Scholar 

  45. S. Marinari, R. Mancinelli, E. Campiglia, and S. Grego, “Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy,” Ecol. Indic. 6 (4), 701–711 (2006).

    Article  Google Scholar 

  46. M. C. Moscatelli, A. Lagomarsino, S. Marinari, P. De Angelis, and S. Grego, “Soil microbial indices as bioindicators of environmental changes in a poplar plantation,” Ecol. Indic. 5 (3), 171–179 (2005).

    Article  Google Scholar 

  47. S. Mohanty, A. K. Nayak, A. Kumar, R. Tripathi, M. Shahid, P. Bhattacharyya, R. Raja, and B. B. Panda, “Carbon and nitrogen mineralization kinetics in soil of rice-rice system under long term application of chemical fertilizers and farmyard manure,” Eur. J. Soil Biol. 58 (6), 113–121 (2013).

    Article  Google Scholar 

  48. U. Sahani and N. Behera, “Impact of deforestation on soil physicochemical characteristics, microbial biomass and microbial activity of tropical soil,” Land Degrad. Dev. 12 (2), 93–105 (2001).

    Article  Google Scholar 

  49. M. Spohn and M. Chodak, “Microbial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soils,” Soil Biol. Biochem. 81 (3), 128–133 (2015).

    Article  Google Scholar 

  50. R. L. Sinsabaugh, S. Manzoni, D. L. Moorhead, and A. Richter, “Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling,” Ecol. Lett. 16 (7), 930–939 (2013).

    Article  Google Scholar 

  51. B. N. Sulman, R. P. Phillips, A.C. Oishi, E. Shevliakova, and S.W. Pacala, “Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2,” Nat. Clim. Change 4 (12), 1099–1102 (2014).

    Article  Google Scholar 

  52. A. Sato and M. Seto, “Relatiosnhip between rate of carbon dioxide evolution, microbial biomass carbon, and amount of dissolved organic carbon as affected by temperature and water content of a forest and an arable land,” Commun. Soil Sci. Plant Anal. 30 (12), 2593–2605 (1999).

    Article  Google Scholar 

  53. V. A. Terekhova, E. V. Prudnikova, S. A. Kulachkova, M. V. Gorlenko, P. V. Uchanov, S. V. Sushko, and N. D. Ananyeva, “Microbiological indicators of heavy metals and carbon containing preparations applied to agrosoddy-podzolic soils differing in humus content,” Eurasian Soil Sci. 54, 448–458 (2021). https://doi.org/10.1134/S1064229321030157

    Article  Google Scholar 

  54. W. J. Wang, J. A. Baldock, R.C. Dalal, and P. W. Moody, “Decomposition dynamics of plant materials in relation to nitrogen availability and biochemistry determined by NMR and wet-chemical analysis,” Soil Biol. Biochem. 36 (12), 2045–2058 (2004).

    Article  Google Scholar 

  55. D. A. Wardle and A. A. Ghani, “Critique of the microbial metabolic quotient (qCO2): as a bioindicator of disturbance,” Soil Biol. Biochem. 27 (12), 1601–1610 (1995).

    Article  Google Scholar 

  56. W. Wang, R. Dalal, P. Moody, and C. Smith, “Relationships of soil respiration to microbial biomass, substrate availability and clay content,” Soil Biol. Biochem. 35 (2), 273–284 (2003).

    Article  Google Scholar 

  57. X. Xu, L. Han, Y. Wang, and K. Inubushi, “Influence of vegetation types and soil properties on microbial biomass carbon and metabolic quotients in temperate volcanic and tropical forest soils,” Soil Sci. Plant Nutr. 53 (4), 430–440 (2007).

    Article  Google Scholar 

  58. X. Xu, J. P. Schimel, I. A. Janssens, X. Song, C. Song, G. Yu, R. L. Sinsabaugh, D. Tang, X. Zhang, and P. E. Thornton, “Global pattern and controls of soil microbial metabolic quotient,” Ecol. Monogr. 87 (3), 429–441 (2017).

    Article  Google Scholar 

  59. Y. Xu, B. Seshadri, N. Bolan, B. Sarkar, Y. S. Ok, W. Zhang, C. Rumpel, D. Sparks, M. Farrell, and T. Hall, “Microbial functional diversity and carbon use feedback in soils as affected by heavy metals,” Environ. Int. 125 (1), 478–488 (2019).

    Article  Google Scholar 

  60. H. Yao, J. Xu, and C. Huang, “Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal-polluted paddy soils,” Geoderma 115 (2), 139–148 (2003).

    Article  Google Scholar 

  61. H. Zang, J. Wang, and Y. Kuzyakov, “N fertilization decreases soil organic matter decomposition in the rhizosphere,” Appl. Soil Ecol. 108 (4), 47–53 (2016).

    Article  Google Scholar 

  62. H. Zhou, D. Zhang, P. Wang, X. Liu, K. Cheng, L. Li, J. Zheng, X. Zhang, J. Zheng, and D. Crowley, “Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: a meta-analysis,” Agric. Ecosyst. Environ. 239 (2), 80–89 (2017).

    Article  Google Scholar 

  63. J. Zhang, Z. Cai, W. Yang, T. Zhu, Y. Yu, X. Yan, and Z. Jia, “Long-term field fertilization affects soil nitrogen transformations in a rice-wheat-rotation crop** system,” J. Plant Nutr. Soil Sci. 175 (6), 939–946 (2012).

    Article  Google Scholar 

  64. Q. Zheng, Y. Hu, S. Zhang, L. Noll, T. Böckle, A. Richter, and W. Wanek, “Growth explains microbial carbon use efficiency across soils differing in land use and geology,” Soil Biol. Biochem. 128 (10), 45–55 (2019).

    Article  Google Scholar 

  65. S. M. Zuber and M. B. Villamil, “Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities,” Soil Biol. Biochem. 97 (3), 176–187 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Thankful to Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan for help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Ashraf.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, M.N., Waqas, M.A. & Rahman, S. Microbial Metabolic Quotient is a Dynamic Indicator of Soil Health: Trends, Implications and Perspectives (Review). Eurasian Soil Sc. 55, 1794–1803 (2022). https://doi.org/10.1134/S1064229322700119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322700119

Keywords:

Navigation