Log in

Study of Some Properties and Catalase Activity in Albic Stagnosols under Different Agrogenic Impacts

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The impact of different farming practices on changes in the properties and catalase activity of Albic Stagnosols with active iron–manganese nodule formation has been studied. The soils of unmanaged fallow with a slightly acid reaction, and the highest values of catalase activity and humus content in the upper part of the profile are close in their properties and morphology to the native soils of natural landscapes. In the soils of the phytoreclamation experiment, the influx of easily decomposable plant residues in combination with a less acidic reaction leads to an increase in the catalase activity. A high level of catalase activity is typical of horizons with the maximum content of nodules. The soils of the experimental variant with long-term application of organic fertilizer are specified by an increased stock of humus in the one-meter layer and by the lowest content of catalase. The application of mineral fertilizers is accompanied by a decrease in the humus content without significant changes in the catalase activity. The calculation of the catalase reserves coefficient, which more objectively reflects the level of enzymatic activity of the studied soils, is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Agrophysical Methods of Soil Research (Nauka, Moscow, 1966) [in Russian].

  2. V. F. Val’kov, K. Sh. Kazeev, and S. I. Kolesnikov, “Methodology for studying the biological activity of soils by an example of the North Caucasus,” Nauch. Mysl’ Kavk., No. 1, 32–37 (1999).

  3. A. Sh. Galstyan, Enzymatic Activity of Armenian Soils (Aiastan, Erevan, 1974) [in Russian].

    Google Scholar 

  4. G. P. Golodyaev, “Biological activity of mountain forest soils in southern Primorye,” in Issues of Abundance, Biomass and Productivity of Soil Microorganisms, Ed. by T. V. Aristovskaya (Nauka, Leningrad, 1972), pp. 240–246 [in Russian].

    Google Scholar 

  5. GOST (State Standard) 26423-85: Methods for Determining the Electrical Conductivity, pH and Dense Residue of Aqueous Extract, 2011.

  6. GOST (State Standard) 26483-85: Preparation of Salt Extract and Determination of Its pH according to the TsINAO Method, 1985.

  7. T. A. Devyatova and A. P. Shcherbakov, “Biological activity of chernozems in the center of the Russian Plain,” Eurasian Soil Sci. 39 (4), 450–456 (2006).

    Article  Google Scholar 

  8. T. V. Denisova and S. I. Kolesnikov, “The influence of super-high-frequency radiation on the enzyme activity and number of microorganisms in soils of southern Russia,” Eurasian Soil Sci. 42 (4), 440–444 (2009).

    Article  Google Scholar 

  9. V. V. Evseev, “Microbiological activity of leached chernozem in grain-fallow and fodder crop rotations of the forest-steppe zone of the Trans-Urals,” Agrar. Vestn. Urala 25 (1), 54–56 (2005).

    Google Scholar 

  10. O. Z. Eremchenko, I. E. Shestakov, and N. V. Mitrakova, “The use of biological indicators in assessing the biogeocenotic functions of soils,” Sovrem. Probl. Nauki Obraz., No. 6, (2012). https://science-education.ru/ru/ article/view?id=728.

  11. F. R. Zaidel’man and A. S. Nikiforova, Genesis and Diagnostic Value of Neoplasms of Soils in the Forest and Forest-Steppe Zones (Izd. Mosk. Univ., Moscow, 2001) [in Russian].

    Google Scholar 

  12. D. G. Zvyagintsev, “Biological activity of soils and scales for assessing some of its indicators”, Pochvovedenie, No. 6, 48–54 (1978).

    Google Scholar 

  13. K. Sh. Kazeev, S. I. Kolesnikov, Yu. V. Akimenko, and E. V. Dadenko, Methods for Biodiagnostics of Terrestrial Ecosystems (Izd. Southern Federal Univ., Rostov-on-Don, 2016) [in Russian].

  14. Classification and Diagnostics of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

  15. N. A. Kireeva, E. I. Novoselova, A. A. Shamaeva, and A. S. Grigoriadi, “Biological activity of a leached chernozem contaminated with the products of combustion of petroleum gas and its restoration upon phytoremediation,” Eurasian Soil Sci. 42 (4), 458–462 (2009).

    Article  Google Scholar 

  16. S. I. Kolesnikov, A. N. Dul’tsev, N. A. Vernigorova, K. Sh. Kazeev, Yu. V. Akimenko, and T. A. Misakyants, “Biodiagnostics of resistance of rice soils of the Kuban to chemical pollution,” Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., No. 2, 57–62 (2017).

  17. S. I. Kolesnikov, A. V. Evreinova, K. Sh. Kazeev, and V. F. Val’kov, “Changes in the ecological and biological properties of ordinary chernozems polluted by heavy metals of the second hazard class (Mo, Co, Cr, and Ni),” Eurasian Soil Sci. 42 (8), 936–942 (2009).

    Article  Google Scholar 

  18. S. I. Kolesnikov, Z. R. Tlekhas, K. Sh. Kazeev, and V. F. Val’kov, “Chemical contamination of adygea soils and changes in their biological properties,” Eurasian Soil Sci. 42 (12), art. 1397 (2009).

    Article  Google Scholar 

  19. N. M. Kostenkov, Redox Regimes in Soils of Periodic Moistening (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  20. I. A. Martirosyan and M. G. Gevorkyan, “Estimated determinations of soil catalase activity,” Pochvovedenie, No. 1, 98–103 (2005).

    Google Scholar 

  21. Methods of Soil Microbiology and Biochemistry, Ed. by D. G. Zvyagintsev (Mosk. Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  22. M-02-0604-2007 “Method for measuring the mass fraction of silicon, calcium, titanium, vanadium, chromium, barium, manganese, iron, nickel, copper, zinc, arsenic, strontium, lead, zirconium, molybdenum in powder samples of soils and bottom sediments by the X-ray spectral method using energy-dispersive X-ray fluorescence Shimadzu EDX type spectrometers,” (St. Petersburg, 2007).

  23. O. I. Naimi, “Catalase activity in ordinary chernozem and the influence of anthropogenic factors on it,” Mezhdunar. Zh. Gumanitarnykh Estestv. Nauk 11–12, 12–15 (2017).

    Google Scholar 

  24. O. P. Neverova and I. V. Shcherbakova, “Total catalase activity of soils and KKP in the National Park “Smolenskoe Priozerye”, Agrar. Vestn. Urala, No. 2, 66–68 (2011).

    Google Scholar 

  25. M. F. Ovchinnikova, “The action and aftereffect of simazine on the process of humification and the antioxidant capacity of soddy-podzolic soils,” Agrokhimiya, No. 5, 101–107 (1982).

    Google Scholar 

  26. V. I. Oznobikhin and E. P. Sinel’nikov, Characteristics of the Main Soil Properties of Primorye and Ways of Their Rational Use (Izd. Primorskii Agric. Inst., Ussuriysk, 1985) [in Russian].

    Google Scholar 

  27. D. S. Orlov, O. N. Biryukova, and M. S. Rozanova, “Additional indicators of the humus status of soils and their genetic horizons,” Pochvovedenie, No. 8, 918–926 (2004).

    Google Scholar 

  28. D. S. Orlov and L. A. Grishina, Practicum on Humus Chemistry (Mosk. Univ., Moscow, 1981) [in Russian].

    Google Scholar 

  29. N. N. Pavlova, T. V. Mel’nikova, and Yu. V. Kulish, “Assessment of changes in the biological activity of urban soils in the area where radiation hazardous objects are located (on the example of the city of Obninsk),” Probl. Reg. Ekol., No. 6, 34–38 (2010).

  30. E. M. Perminova and A. M. Lapteva, “Catalase activity of podzolic soils of native bilberry spruce forest and mixed-aged deciduous-coniferous communities,” Agrar. Vestn. Urala 172 (5), 44–53 (2018).

    Google Scholar 

  31. L. N. Purtova and M. L. Burdukovskii, “On the assessment of the ecological state of meadow-brown soils in Primorye,” Vestn. Krasnoyarsk. Gos. Agrar. Univ., No. 7, 12–18 (2016).

  32. L. N. Purtova and N. M. Kostenkov, Organic Carbon Content and Energy Reserves in Soils of Natural and Agrogenic Landscapes in the South of the Russian Far East (Dal’nauka, Vladivostok, 2009) [in Russian].

    Google Scholar 

  33. L. N. Purtova and Ya. O. Timofeeva, “Fine earth and nodules in agrogenic soils from the south of Primorskii region: physicochemical and optical properties, catalase and catalytic activity,” Eurasian Soil Sci. 54 (12), 1855–1863 (2021).

    Article  Google Scholar 

  34. L. N. Purtova, L. N. Shchapova, S. N. Inshakova, and A. N. Emel’yamov, “Influence of phytomelioration on the fertility of agroabrazems in Primorye,” Agrar. Vestn. Urala, No. 10, 10–12 (2012).

    Google Scholar 

  35. V. I. Roslikova, Manganese-Ferruginous Neoplasms in Soils of Plain Landscapes in the Humid Zone (Dal’nauka, Vladivostok, 1996) [in Russian].

    Google Scholar 

  36. A. A. Stepan’ko, Agrogeographical Assessment of Land Resources and Their Use in the Regions of the Far East (Dal’nauka, Vladivostok, 1992) [in Russian].

    Google Scholar 

  37. E. V. Tovstik and A. S. Ol’kova, “Assessment of the influence of factors of abiotic nature on the enzymatic activity of the soil,” Ekobiotekh 4 (2), 128–134 (2021).

    Google Scholar 

  38. Ya. O. Timofeeva, “Accumulation and fractionation of trace elements in soil ferromanganese nodules of different size,” Geochem. Int. 46 (3), 260–267 (2008).

    Article  Google Scholar 

  39. G. N. Fedotov and E. I. Pakhomova, “Catalase activity and soil gel structures,” Lesn. Vestn., No. 2, 213-218 (2006).

  40. F. Kh. Khaziev, “Ecological relationships of enzymatic activity of soils,” Ekobiotekh 1 (2), 80–92 (2018).

    Google Scholar 

  41. L. E. Khmelevtsova, I. S. Sazykin, T. N. Azhogina, and M. A. Sazykina, “Prokaryotic peroxidases and their application in biotechnology (review),” Appl. Biochem. Microbiol. 56 (4), 373–380 (2020).

    Article  Google Scholar 

  42. L. N. Shchapova, Microflora of Soils in the South of the Russian Far East (Izd. Dal’nevost. Otd. Ros. Akad. Nauk, Vladivostok, 1994) [in Russian].

    Google Scholar 

  43. D. Amat, J. K. Thakur, A. Mandal, A. K. Patra, and K. K. K. Reddy, “Microbial indicator of soil health: conventional to modern approaches,” in Rhizosphere Microbes. Microorganisms for Sustainability (Springer, Singapore, 2021), Vol. 23, pp. 213–233. https://doi.org/10.1007/978-981-15-9154-9_8

  44. M. F. Cotrufo, M. D. Wallenstein, C. Boot, K. Denef, and E. Paul, “The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?” Global Change Biol. 19, 988–995 (2013).

    Article  Google Scholar 

  45. P. Dijkstra, S. C. Thomas, P. L. Heinrich, G. W. Koch, E. Schwartz, and B. A. Hungate, “Effect of temperature on metabolic activity of intact microbial communities: evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency,” Soil Biol. Biochem. 43, 2023–2031 (2011).

    Article  Google Scholar 

  46. D. Gasparatos, I. Massas, and A. Godelitsas, “Fe-Mn concretions and nodules formation in redoximorphic soils and their role on soil phosphorus dynamics: current knowledge and gaps,” Catena 182, art. 104106 (2019). https://doi.org/10.1016/j.catena.2019.104106

    Article  Google Scholar 

  47. H. Kirchmann, G. Haberhauer, E. Kandeler, A. Sessitsch, and M. H. Gerzabek, “Effects of level and quality of organic matter input on carbon storage and biological activity in soil: synthesis of a long-term experiment,” Global Biogeochem. Cycles 18, GB4011 (2004).

    Article  Google Scholar 

  48. M. C. Rillig, B. A. Caldwell, H. A. B. Wosten, and P. Sollins, “Role of proteins in soil carbon and nitrogen storage: controls on persistence,” Biogeochemistry 85, 25–44 (2007).

    Article  Google Scholar 

  49. Y. O. Timofeeva, A. A. Karabtsov, V. A. Semal’, M. L. Burdukovskii, and N. V. Bondarchuk, “Iron-manganese nodules in Udepts: the dependence of the accumulation of the trace elements on nodule size,” Soil Sci. Soc. Am. J. 78, 767–778 (2014). https://doi.org/10.2136/sssaj2013.10.0444

    Article  Google Scholar 

  50. Y. Timofeeva, A. Karabtsov, M. Ushkova, M. Burdukovskii, and V. Semal, “Variation of trace elements accumulation by iron-manganese nodules from Dystric Cambisols with and without contamination,” J. Soils Sediments 21, 1064–1078 (2021). https://doi.org/10.1007/s11368-020-02814-w

    Article  Google Scholar 

Download references

Funding

This study was performed within the framework of state assignment of the Ministry of Science and Higher Education of the Russian Federation, project no. 121031000134-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. O. Timofeeva.

Ethics declarations

The authors declare that they have not conflict of interest.

Additional information

Translated by T. Chicheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purtova, L.N., Timofeeva, Y.O. Study of Some Properties and Catalase Activity in Albic Stagnosols under Different Agrogenic Impacts. Eurasian Soil Sc. 55, 1436–1445 (2022). https://doi.org/10.1134/S1064229322100131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322100131

Keywords:

Navigation