Log in

Chemical Structure of the Organic Matter of Water-Stable Structural Units in Haplic Chernozem under Contrasting Land Uses: Solid-State CP-MAS 13C-NMR Spectroscopy

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The chemical structure of different soil organic matter (OM) pools in water-stable macro- and free microaggregates isolated from the surface horizons of Haplic Chernozem in contrasting variants of land use (steppe and long-term bare fallow) is studied using solid-state 13C-NMR spectroscopy. It is observed that the degree of OM protection increases with a decrease in the size of structural units, which is confirmed by integral characteristics of OM chemical structure, such as lower degrees of OM decomposition, aromaticity, and hydrophobicity of microaggregates as compared with macroaggregates. A negative effect of the long-term bare fallow regime causes a sharp increase in the integral indicators of the chemical structure in all studied OM pools, being more pronounced in free microaggregates. The proposed multiple linear regression models for the C/N value prediction (\(R_{{adj}}^{2}\) = 0.993, P < 0.05 for discrete (free and occluded) OM and \(R_{{adj}}^{2}\) = 0.996, P < 0.05 for the clay-bound OM and the residue fraction) clearly explain its increase in the bare fallow, reflecting the maximum nitrogen losses in OM, which in its status approaches the degraded one. According to the proposed model, the size of clay particles is determined by a set of factors. The best model with all its parameters being significant (\(R_{{adj}}^{2}\) = 0.997, P < 0.05) clearly demonstrates that the average diameter of clay particles increases with a decrease in the amount of OM hydrophobic fragments, the share of smectites in clay, and increase in the content of the clay-bound carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Z. S. Artemyeva, Abstract of Doctoral Dissertation in Biology (Moscow, 2008) [in Russian].

  2. Classification and Diagnostics of Soils of the USSR (Kolos, Moscow, 1977) [in Russian].

  3. B. M. Kogut, Z. S. Artemyeva, N. P. Kirillova, M. A. Yashin, and E. I. Soshnikova, “Organic matter of the air-dry and water-stable macroaggregates (2–1 mm) of haplic chernozem in contrasting variants of land use,” Eurasian Soil Sci. 52, 141–149 (2019). https://doi.org/10.1134/S106422931902008X

    Article  Google Scholar 

  4. G. N. Fedotov and Z. S. Artem’eva, “Colloidal component of granulodensimetric soil fractions,” Eurasian Soil Sci. 48, 54–62 (2015). https://doi.org/10.1134/S1064229315010044

    Article  Google Scholar 

  5. D. V. Khan, Organomineral Compounds and Soil Structure (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  6. Z. Artemyeva, N. Danchenko, Yu. Kolyagin, N. Kirillova, and B. Kogut, “Chemical structure of soil organic matter and its role in aggregate formation in haplic chernozem under the contrasting land use variants,” Catena 204, 105403 (2021). https://doi.org/10.1016/j.catena.2021.105403

    Article  Google Scholar 

  7. T. Asselman and G. Garnier, “Adsorption of model wood polymers and colloids on bentonites,” Colloids Surf., A 168, 175–182 (2000). https://doi.org/10.1016/S0927-7757(00)00430-1

    Article  Google Scholar 

  8. J. A. Baldock, J. M. Oades, A. M. Vassallo, and M. A. Wilson, “Solid-state CP/MAS 13C NMR analysis of bacterial and fungal cultures isolated from a soil incubated with glucose,” Aust. J. Soil Res. 28, 213–225 (1990). https://doi.org/10.1071/SR9900213

    Article  Google Scholar 

  9. M. H. Beare, M. L. Cabrera, P. F. Hendrix, and D. C. Coleman, “Aggregate-protected and unprotected pools of organic matter in conventional and no-tillage Ultisols,” Soil Sci. Soc. Am. J. 58, 787–795 (1994). https://doi.org/10.2136/sssaj1994.03615995005800030021x

    Article  Google Scholar 

  10. H. Bossuyt, J. Six, and P. F. Hendrix, “Aggregate-protected carbon in no-tillage and conventional tillage agroecosystems using carbon-14 labeled plant residue,” Soil Sci. Soc. Am. J. 66, 1965–1973 (2002). https://doi.org/10.2136/sssaj2002.1965

    Article  Google Scholar 

  11. C. A. Cambardella and E. T. Elliott, “Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils,” Soil Sci. Soc. Am. J. 57, 1071–1076 (1993). https://doi.org/10.2136/sssaj1993.03615995005700040032x

    Article  Google Scholar 

  12. A. M. Cates, M. D. Ruark, J. L. Hedtcke, and J. L. Posner, “Long-term tillage, rotation and perennialization effects on particulate and aggregate soil organic matter,” Soil Tillage Res. 155, 371–380 (2016). https://doi.org/10.1016/j.still.2015.09.008

    Article  Google Scholar 

  13. C. Chenu and G. Stotzky, “Interactions between microorganisms and soil particles: an overview,” in Interactions Between Soil Particles and Microorganisms: Impact on the Terrestrial Ecosystem (Wiley, Chichester, 2002), pp, 3–39.

  14. J. S. Clemente, A. J. Simpson, and M. J. Simpson, “Association of specific organic matter compounds in size fractions of soils under different environmental controls,” Org. Geochem. 42, 1169–1180 (2011). https://doi.org/10.1016/j.orggeochem.2011.08.010

    Article  Google Scholar 

  15. N. N. Danchenko, Z. S. Artemyeva, Yu. G. Kolyagin, and B. M. Kogut, “Features of the chemical structure of different organic matter pools in haplic chernozem of the Streletskaya steppe: 13C MAS NMR study,” Environ. Res. 191, 110205 (2020). https://doi.org/10.1016/j.envres.2020.110205

    Article  Google Scholar 

  16. E. T. Elliott, “Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils,” Soil Sci. Soc. Am. J. 50, 627–633 (1986). https://doi.org/10.2136/sssaj1986.03615995005000030017x

    Article  Google Scholar 

  17. X. Feng, A. J. Simpson, and M. J. Simpson, “Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces,” Org. Geochem. 36 (11), 1553–1566 (2005). https://doi.org/10.1016/j.orggeochem.2005.06.008

    Article  Google Scholar 

  18. J. D. Jastrow, “Soil aggregate formation and the accrual of particulate and mineral associated organic matter,” Soil Biol. Biochem. 28, 656–676 (1996). https://doi.org/10.1016/0038-0717(95)00159-X

    Article  Google Scholar 

  19. A. Golchin, J. M. Oades, J. O. Skjemstad, and P. Clarke, “Soil structure and carbon cycling,” Aust. J. Soil Res. 32, 1043–1068 (1994). https://doi.org/10.1071/SR9941043

    Article  Google Scholar 

  20. A. Golchin, J. A. Baldock, and J. M. Oades, “A model linking organic matter decomposition, chemistry, and aggregate dynamic,” in Soil Processes and the Carbon Cycle (CRC Press, Boca Raton, FL, 1997), pp. 245–266.

    Google Scholar 

  21. S. Ghosh, Z.-Y. Wang, S. Kang, P. C. Bhowmik, and B. **ng, “Sorption and fractionation of a peat derived humic acid by kaolinite, montmorillonite and goethite,” Pedosphere 19 (1), 21–30 (2009). https://doi.org/10.1016/S1002-0160(08)60080-6

    Article  Google Scholar 

  22. V. V. S. R. Gupta and J. J. Germida, “Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation,” Soil Biol. Biochem. 20, 777–786 (1988). https://doi.org/10.1016/0038-0717(88)90082-X

    Article  Google Scholar 

  23. P. G. Hatcher, M. Schnitzer, L. W. Dennis, and G. E. Maciel, “Aromaticity of humic substances in soils,” Soil Sci. Soc. Am. J. 45, 1089–1094 (1981). https://doi.org/10.2136/sssaj1981.03615995004500060016x

    Article  Google Scholar 

  24. P. M. Huang, M. K. Wang, and C. Y. Chiu, “Soil mineral-organic matter-microbe interactions: Impacts on biogeochemical processes and biodiversity in soils,” Pedobiology 49, 609–635 (2005). https://doi.org/10.1016/j.pedobi.2005.06.006

    Article  Google Scholar 

  25. H. Knicker, “Solid state CPMAS 13C and 15N NMR spectroscopy in organic geochemistry and how spin dynamics can either aggravate or improve spectra interpretation,” Org. Geochem. 42 (8), 867–890 (2011). https://doi.org/10.1016/j.orggeochem.2011.06.019

    Article  Google Scholar 

  26. A. Kölbl and I. Kögel-Knabner, “Content and composition of free and occluded particulate organic matter in a differently textured arable Cambisol as revealed by solid-state 13C NMR spectroscopy,” J. Plant Nutr. Soil Sci. 167, 45–53 (2004). https://doi.org/10.1002/jpln.200321185

    Article  Google Scholar 

  27. P. M. Kopittke, R. C. Dalal, C. Hoeschen, et al., “Soil organic matter is stabilized by organo-moneral associations through two key processes: the role of the carbon to nitrogen ratio,” Geoderma 357, 113974 (2020). https://doi.org/10.1016/j.geoderma.2019.113974

    Article  Google Scholar 

  28. E. Lichtfouse, C. Chenu, F. Baudin, et al., “A novel pathway of soil organic matter formation by selective preservation of resistant straight-chain biopolymers: chemical and isotope evidence,” Org. Geochem. 28 (6), 411–415 (1998). https://doi.org/10.1016/S0146-6380(98)00005-9

    Article  Google Scholar 

  29. S. Manzoni and A. Porporato, “Soil carbon and nitrogen mineralization: theory and models across scales,” Soil Biol. Biochem. 41, 1355–1379 (2009). https://doi.org/10.1016/j.soilbio.2009.02.031

    Article  Google Scholar 

  30. S. Manzoni, J. A. Trofymow, R. B. Jackson, and A. Porporato, “Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter,” Ecol. Monogr. 80 (1), 89–106 (2010). https://doi.org/10.1890/09-0179.1

    Article  Google Scholar 

  31. M. Mooshammer, W. Wanek, I. Haemmerle, et al., “Adjustment of microbial nitrogen use efficiency to carbon: nitrogen imbalances regulates soil nitrogen cycling,” Nat. Commun. 5, 3694 (2014). https://www.nature.com/naturecommunications.https://doi.org/10.1038/ncomms4694

    Article  Google Scholar 

  32. C. Nicolás, T. Martin-Bertelsen, D. Floudas, J. Bentzer, M. Smits, T. Johansson, C. Troein, P. Persson, and A. Tunlid, “The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen,” ISME J. 13, 977–988 (2019). https://doi.org/10.1038/s41396-018-0331-6

    Article  Google Scholar 

  33. S. L. O’Brien and J. D. Jastrow, “Physical and chemical protection in hierarchical soil aggregates regulates soil carbon and nitrogen recovery in restored perennial grasslands,” Soil Biol. Biochem. 61, 1–13 (2013). https://doi.org/10.1016/j.soilbio.2013.01.031

    Article  Google Scholar 

  34. S. M. F. Rabbi, B. R. Wilson, P. V. Lockwood, H. Daniel, and I. M. Young, “Aggregate hierarchy and carbon mineralization in two Oxisols of New South Wales, Australia,” Soil Tillage Res. 146, 193–203 (2015). https://doi.org/10.1016/j.still.2014.10.008

    Article  Google Scholar 

  35. A. G. Seech and E. G. Beauchamp, “Denitrification in soil aggregates of different sizes,” Soil Sci. Soc. Am. J. 52, 1616–1621 (1988). https://doi.org/10.2136/SSSAJ1988.03615995005200060019X

    Article  Google Scholar 

  36. A. J. Simpson, M. J. Simpson, W. L. Kingery, et al., “The application of 1H high-resolution magicangle spinning NMR for the study of clay–organic associations in natural and synthetic complexes,” Langmuir 22 (10), 4498–4503 (2006). https://doi.org/10.1021/la052679w

    Article  Google Scholar 

  37. J. Six, E. T. Elliott, and K. Paustian, “Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture,” Soil Biol. Biochem. 32, 2099–2103 (2000). https://doi.org/10.1016/S0038-0717(00)00179-6

    Article  Google Scholar 

  38. H. Soinne, J. Hyväluoma, E. Ketoja, and E. Turtola, “Relative importance of organic carbon, land use and moisture conditions for the aggregate stability of post-glacial clay soils,” Soil Tillage Res. 158, 1–9 (2016). https://doi.org/10.1016/j.still.2015.10.014

    Article  Google Scholar 

  39. J. M. Tisdall and J. M. Oades, “Organic matter and water-stable aggregates in soils,” J. Soil Sci. 33, 141–163 (1982). https://doi.org/10.1111/j.1365-2389.1982.tb01755.x

    Article  Google Scholar 

  40. K. U. Totsche, W. Amelung, M. H. Gerzabek, et al., “Microaggregates in soils,” J. Plant Nutr. Soil Sci. 181 (1), 104–136 (2018). https://doi.org/10.1002/jpln.201600451

    Article  Google Scholar 

  41. R. Wagai, L. M. Mayer, and K. Kitayama, “Nature of the “occluded” low-density fraction in soil organic matter studies: a critical review,” Soil Sci. Plant Nutr. 55 (1), 13–25 (2009). https://doi.org/10.1111/j.1747-0765.2008.00356.x

    Article  Google Scholar 

  42. M. M. Wander and X. Yang, “Influence of tillage on the dynamics of loose- and occluded particulate and humified organic matter fractions,” Soil Biol. Biochem. 32, 1151–1160 (2000). https://doi.org/10.1016/S0038-0717(00)00031-6

    Article  Google Scholar 

  43. A. Wild, Russell’s Soil Conditions and Plant Growth (Wiley, Chichester, 1988).

    Google Scholar 

  44. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2014).

    Google Scholar 

  45. S. Xu, M. L. Silveira, L. W. Ngatia, A.E. Normand, et al., “Carbon and nitrogen pools in aggregate size fractions as affected by sieving method and land use intensification,” Geoderma 305, 70–79 (2017). https://doi.org/10.1016/j.geoderma.2017.05.044

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. S. Artemyeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artemyeva, Z.S., Danchenko, N.N., Kolyagin, Y.G. et al. Chemical Structure of the Organic Matter of Water-Stable Structural Units in Haplic Chernozem under Contrasting Land Uses: Solid-State CP-MAS 13C-NMR Spectroscopy. Eurasian Soil Sc. 55, 734–744 (2022). https://doi.org/10.1134/S1064229322060035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322060035

Keywords:

Navigation