Log in

Composition of Water Extracts from Plant Material and Soils on Calcareous Rocks and of Surface Water in the Northern Part of the Polar Urals

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

A comparative analysis of the chemical composition and properties of water-soluble compounds of the soils on calcareous rocks, aboveground phytomass, and waters is performed for the northern part of the Bolshoi Paipudynsky Ridge (Polar Urals, Russia). Potassium and calcium ions (45–60 and 30–45%, respectively) are prevalent in the water extracts of plant material. From the O horizon to mineral horizons, the content of Ca2+ ions in water extracts increases from 50–70 to 80–90% with a concurrent decrease in the content of K+ ions from 12–34% (O horizon) to zero (mineral horizons). Uniform compositions of surface waters and water extracts of lower soil horizons reflect the specific features inherited from the soils of the catchment area. The properties of the group of humus horizons—gray-humus (AY), mucky–dark-humus (AH), and mucky (H)—are most variable. The water extracts of the phytomass contain 8–106 g/kg Corg, 0.4–5.8 g/kg Norg, and 1.5–32 g/kg soluble salts. The contents of all these components in water extracts by the O horizon decreases by 1–1.5 orders of magnitude and further by 1–2 orders of magnitude in the mineral horizons. The surface waters are ultrafresh. In the absence of organic compounds, their acid–base properties are mainly controlled by carbonates and bicarbonates of alkaline and alkaline- earth metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. State standard of the Russian Federation GOST R 51592-2000, Voda. Obshchie trebovaniya k otboru prob (Water. General Requirements to Sampling), Moscow: Standartinform, 2008 [in Russian].

REFERENCES

  1. A. I. Agatova, N. M. Lapina, and N. I. Torgunova, “The rates of organic matter destruction in the central part of the Arctic Basin,” Oceanology (Engl. Transl.) 51, 775–784 (2011).

  2. S. O. Alimkulova and D. K. Muradova, “Biological role of phosphorous in plants,” Molodoi Uchenyi, No. 10 (90), 44–47 (2015).

    Google Scholar 

  3. Anthropogenic Dynamics of Vegetation Cover of Arctic and Subarctic: Principles amd Study Methods, Tr. Bot. Inst. im. V.L. Komarova, Ross. Akad. Nauk, no. 15, (Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, 1995) [in Russian].

  4. Atlas of Soils of the Komi Republic, Ed. by G. V. Dobrovol’skii, (Syktyvkar, 2010) [in Russian].

    Google Scholar 

  5. Atlas of the Komi Republic (Feoriya, Moscow, 2011) [in Russian].

  6. L. A. Belyanina, Candidate’s Dissertation in Biology (Moscow, 2007).

  7. B. I. Bershtein and A. S. Okanenko, “Potassium, photosynthesis, and plant metabolism,” Fiziol. Biokhim. Kul’t. Rast. 11, 515–526 (1979).

    Google Scholar 

  8. V. F. Val’kov, K. Sh. Kazeev, S. I. Kolesnikov, and M. A. Kutrovskii, Pedogenesis on Limestones and Marly Soils (Rostov-on-Don, 2007) [in Russian].

    Google Scholar 

  9. N. N. Vetoshkina, “Minimal river run-off of the eastern slope of Polar, Cis-Polar, and Northern Urals,” Tr. Komi Fil., Akad. Nauk SSSR, No. 26, 93–112 (1973).

    Google Scholar 

  10. L. A. Vorob’eva, “Acidic and basic components of soil solutions and soil extracts,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 3, 31–35 (1982).

  11. L. A. Vorob’eva, “Soil alkalinity: indicators, structure, and nature,” Pochvovedenie, No. 5, 21–28 (1993).

    Google Scholar 

  12. L. A. Vorob’eva, N. A. Gerasimenko, and N. B. Khitrov, “The effect of excessive moistening on the nature of alkalinity in ordinary chernozems and meadow-chernozemic soils of Rostov oblast,” Eurasian Soil Sci. 35, 380–391 (2002).

    Google Scholar 

  13. L. A. Vorob’eva and E. I. Pankova, “Saline-alkali soils of Russia,” Eurasian Soil Sci. 41, 457–470 (2008).

    Article  Google Scholar 

  14. E. I. Gagarina, “Weathering of fragments of calcareous rocks in soil,” Pochvovedenie, No. 9, 117–126 (1968).

    Google Scholar 

  15. L. P. Goldina, “Lakes of Polar Ural,” Izv. Komi Fil. Geogr. O-va SSSR 2 (5), 64–73 (1973).

    Google Scholar 

  16. S. V. Goryachkin, Soil Cover of the North: Structure, Genesis, Ecology, and Evolution (GEOS, Moscow, 2010) [in Russian].

  17. S. V. Goryachkin, Yu. N. Vodyanitskii, D. E. Konyushkov, S. N. Lesovaya, et al., “Bioclimatogenic and geogenic problems in soil geography of Northern Eurasia,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 62, 48–68 (2008).

    Google Scholar 

  18. L. K. Grunina and M. V. Getsen, “Biogenic accumulation of nitrogen by plants in the tundra zone,” Nauchn. Dokl. Komi Fil., Akad. Nauk SSSR, No. 97, (1984).

  19. E. V. Zhangurov, Candidate’s Dissertation in Agriculture (Moscow, 2013).

  20. E. V. Zhangurov, V. V. Startsev, Ya. A. Dubrovskiy, S. V. Degteva, and A. A. Dumov, “Morphogenetic features of soils under mountainous larch forests and woodlands in the Subpolar Urals,” Eurasian Soil Sci. 52, 1463–1476 (2019). https://doi.org/10.1134/S1064229319120147

    Article  Google Scholar 

  21. A Map of Quaternary Formations, Sheet Q 42-43, Scale 1 : 1 000 000 (Karpinskiy All Russia Research Institute for Geology, Moscow, 1995) [in Russian].

  22. A. V. Klimanov, L. A. Vorob’eva, A. F. Novikova, and M. V. Konyushkova, The nature of alkalinity in virgin and anthropogenically modified solonetzes of Northern Kalmykia, Eurasian Soil Sci. 47, 266–275 (2014). https://doi.org/10.1134/S1064229314040036

    Article  Google Scholar 

  23. D. E. Konyushkov, Candidate’s Dissertation in Geography (Moscow, 1991).

  24. D. E. Konyushkov, M. I. Gerasimova, and T. V. Ananko, “Correlation of soddy calcareous soils on the soil map of the Russian Federation (1 : 2.5 M scale, 1988) and in the Russian soil classification system,” Eurasian Soil Sci. 52, 244–257 (2019). https://doi.org/10.1134/S1064229319030074

  25. G. F. Koposov, “Genesis of soddy-podzolic soils,” Pochvovedenie, No. 4, 5–15 (1981).

    Google Scholar 

  26. I. V. Larin, Sh. M. Agababyan, T. A. Rabotisa, et al., Fodder Plants of Hayfields and Pastures of USSR (Sel’khozgiz, Moscow, 1950) [in Russian].

    Google Scholar 

  27. E. V. Loginova and P. S. Lopukh, Hydroecology (Belarusian State University, Minsk, 2011) [in Russian].

    Google Scholar 

  28. I. N. Lyubimova, A. V. Gorobets, V. A. Grachev, and N. S. Nikitina, “The nature of alkalinity in virgin and agrogenic soils of solonetzic complexes in Volgograd oblast,” Eurasian Soil Sci. 37, 1173–1181 (2004).

    Google Scholar 

  29. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2015; Moscow State Univ., Moscow, 2017).

  30. National Soil Atlas of the Russian Federation (Astrel’, Moscow, 2011) [in Russian].

  31. A. M. Nikanorov, Hydrochemistry (Gidrometeoizdat, St. Petersburg, 2001) [in Russian].

    Google Scholar 

  32. A. I. Perel’man and N. S. Kasimov, Geochemistry of Landscape (Astreya-2000, Moscow, 1999) [in Russian].

  33. Field Guide for Identification of Russian Soils (Dokuchaev Soil Science Inst., Moscow, 2008) [in Russian].

  34. Soil Map of RSFSR, Scale 1 : 2 500 000, Ed. by V. M. Fridland (Main Directorate of Geodesy and Cartography, Moscow, 1988) [in Russian].

  35. Soils and Soil Cover of the Pechora-Ilych Nature Reserve (Northern Ural), Ed. by S. V. Degteva and E. M. Lapteva (Komi Scientific Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, 2013) [in Russian].

  36. E. V. Rogozhnikova and Yu. N. Zborishchuk, “Carbonates in some soils of the Kamennaya Steppe,” Moscow Univ. Soil Sci. Bull. 64, 113–121 (2009).

    Article  Google Scholar 

  37. L. E. Rodin and N. I. Bazilevich, Dynamics of Organic Matter and Biological Cycle of Ash Elements and Nitrogen in General Types of the Global Vegetation (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  38. T. A. Sokolova, T. Ya. Dronova, and I. I. Tolpeshta, Clay Minerals in Soils (Grif i K, Tula, 2005) [in Russian].

    Google Scholar 

  39. V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, “Environmental information in the substantive-genetic classification system of Russian soils,” Eurasian Soil Sci. 38, 938–943 (2005).

    Google Scholar 

  40. I. S. Khantimer, Agricultural Development of Tundra Regions (Nauka, Leningrad, 1974) [in Russian].

    Google Scholar 

  41. A. A. Khantulev, E. I. Gagarina, N. N. Matinyan, and L. S. Schastnaya, “Soil genesis of the northwestern part of RSFSR (Leningrad, Pskov, and Novgorod oblasts),” Vestn. Leningr. Univ., No. 9, 121–127 (1972).

  42. G. I. Kharaev, S. S. Yampilov, B. B. Tanganov, and A. G. Khanturgaev, Ecological Monitoring (East Siberia State University of Technology and Management, Ulan-Ude, 2004) [in Russian].

    Google Scholar 

  43. L. G. Khokhlova, “Hydrochemistry of rivers in tundra zone,” in Proceedings of the International Conference “Exploration of the North and Problems of Recultivation,” Abstracts of Papers (Syktyvkar, 1991), pp. 196–197.

  44. A. P. Chevychelov, A. K. Kontorovskii, and Kh. Ziger, “The genetic nature of the residual calcareous soils of Yakutia,” Pochvovedenie, No. 3, 5–16 (1990).

    Google Scholar 

  45. L. A. Chudinova and N. V. Orlova, Physiology of Stress-Resistance of Plants (Perm State Univer., Perm, 2006) [in Russian].

    Google Scholar 

  46. E. V. Shamrikova, E. V. Vanchikova, T. S. Sytar’, and O. M. Zueva, “Comparison of the methods for determining the organic carbon concentration in natural waters and water extracts from soils,” Voda: Khim. Ekol., No. 4, 88–92 (2012).

  47. E. V. Shamrikova, I. V. Gruzdev, V. V. Punegov, F. M. Khabibullina, and O. S. Kubik, “Water-soluble low-molecular-weight organic acids in automorphic loamy soils of the tundra and taiga zones,” Eurasian Soil Sci. 46, 654–659 (2013). https://doi.org/10.1134/S1064229313060082

    Article  Google Scholar 

  48. E. V. Shamrikova, S. V. Deneva, and O. S. Kubik, “Spatial patterns of carbon and nitrogen in soils of the Barents Sea coastal area (Khaypudyrskaya Bay),” Eurasian Soil Sci. 52, 507–517 (2019).

    Article  Google Scholar 

  49. E. V. Shamrikova, E. V. Zhangurov, E. E. Kulyugina, M. A. Korolev, O. S. Kubik, and E. A. Tumanova, “Soils and the soil cover of mountainous tundra landscapes on calcareous rocks in the Polar Urals: diversity, taxonomy, and nitrogen and carbon patterns,” Eurasian Soil Sci. 53, 1206–1221 (2020). https://doi.org/10.1134/S106422932009015X

    Article  Google Scholar 

  50. E. V. Shamrikova, T. A. Sokolova, and I. V. Zaboeva, “The acid-base buffering in organic horizons of podzolic and bog-podzolic soils in the Komi Republic,” Eurasian Soil Sci. 36, 714–723 (2003).

    Google Scholar 

  51. T. Dittmar and G. Kattner, “The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review,” Mar. Chem. 83, 101–190 (2003).

    Article  Google Scholar 

  52. V. Mangal, Y. X. Shi, and C. Guéguen, “Compositional changes and molecular transformations of dissolved organic matter during the arctic spring floods in the lower Churchill watershed (Northern Manitoba, Canada),” Biogeochemistry. 136, 151–165 (2017). https://doi.org//10.1007/s10533-017-0388-8

    Article  Google Scholar 

  53. N. G. Oberman and G. G. Mazhitova, “Permafrost dynamics in the North-East of European Russia at the end of the 20th century,” Nor. Geogr. Tidsskr. 55 (4), 241–244 (2001).

    Article  Google Scholar 

  54. S. Sjögersten, B. L. Turner, N. Mahieu, L. M. Condron, and P. A. Wookey, “Soil organic matter biochemistry and potential susceptibility to climatic across the forest-tundra ecotone in the Fennoscandian mountains,” Global Change Biol. 9, 759–772 (2003).

    Article  Google Scholar 

  55. G. Sposito and K. M. Holtsceaw, “Titration studies on the polynuclear, polyacidic nature of fulvic acid extracted from sewage sludge-soil mixtures,” Soil Sci. Soc. Am. J. 41 (2), 330–336 (1977).

    Article  Google Scholar 

  56. P. A. W. van Hees and U. S. Lundström, “Equilibrium models of aluminum and iron complexation with different organic acids in soil solution,” Geoderma 94 (2–4), 201–221 (2000).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are sincerely grateful to Yu.V. Zhdanov for his assistance in field studies (Labytnangi) and Ya.I. Belyaev (Syktyvkar) for his assistance in field sampling.

Funding

The work was performed under the budget project “Detection of general regular patterns in the formation and function of peat soils in the Arctic and Subarctic sectors of the European Northeast Russia” no. AAAA-A17-117122290011-5) and supported by the Russian Foundation for Basic Research (project no. 20-04-00445a “The factors and mechanisms of stabilization of organic substance in soils under extreme conditions (case study of Arctic ecosystems)”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Shamrikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Dedicated to the blessed memory of Tatyana Alekseevna Sokolova

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamrikova, E.V., Zhangurov, E.V., Kubik, O.S. et al. Composition of Water Extracts from Plant Material and Soils on Calcareous Rocks and of Surface Water in the Northern Part of the Polar Urals. Eurasian Soil Sc. 54, 1161–1175 (2021). https://doi.org/10.1134/S1064229321080159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321080159

Keywords:

Navigation