Log in

Responses of Soil Labile Organic Carbon and Carbon Management Index to Different Long-Term Fertilization Treatments in a Typical Yellow Soil Region

  • AGRICULTURAL CHEMISTRY AND SOIL FERTILITY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract—

The capacity of soil to store carbon (C) and emit carbon dioxide (CO2) into the atmosphere primarily depends on soil management practices. It is essential to understand the impact of management strategies on the soil organic carbon (SOC) content and labile organic carbon (LOC) fraction. The impacts of 24‑year-long organic and inorganic nitrogen (N) treatments on SOC, KMnO4-oxidizable organic carbon and its fractions (highly labile organic carbon (HLOC), moderately labile organic carbon (MLOC), low labile organic carbon (LLOC) and nonlabile organic carbon (NLOC)), and a carbon management index (CMI) were investigated under a continuous maize cultivation system in a long-term experiment in Guizhou, Southwest China. Six fertilizer treatments were included: no fertilizer input (CK), chemical fertilizer alone (NPK), 25% N through farmyard manure (FYM) plus 75% N through chemical fertilizer (1/4N-M+3/4N-CF), 50% N through FYM plus 50% N through chemical fertilizer (1/2N-M+1/2N-CF), FYM plus chemical fertilizer (MNPK) and FYM alone (M). We used the LOC content and CMI value to assess the effects of long-term combinations of FYM and chemical fertilizers at different rates on the SOC pool in various soil layers (0–20, 20–40, 40–60, 60–80, 80–100 cm) and to identify the most suitable integrated treatment. The results showed that the application of organic fertilizer generally increased the SOC content, the LOC fraction, and the CMI values in different layers, especially the surface layer, compared to the CK and NPK fertilization treatments. The SOC content and LOC fraction decreased with increasing soil depth. The significant relationship between the LOC fraction, CMI value, LOC available ratio of carbon (LOC-AR), and soil parameters showed that these values can be used to sensitively assess soil quality and SOC changes in the system. Considering the comprehensive effects on the SOC content, LOC fraction, CMI value, AR value, etc., the 1/4N-M+3/4N-CF and 1/2N-M+1/2N-CF treatments showed the greatest influence on carbon sequestration and soil productivity; therefore, these could be the best options for maize crop** systems in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. D. Bao, Methods for Soil Agricultural and Chemical Analysis (China Agricultural Press, Bei**g, 2000), pp. 30–34.

    Google Scholar 

  2. V. O. Biederbeck, H. H. Janzen, C. A. Campbell, and R. P. Zentner, “Labile soil organic matter as influenced by crop** practices in an arid environment,” Soil Biol. Biochem. 26 (12), 1647–1656 (1994). https://doi.org/10.1016/0038-0717(94)90317-4

    Article  Google Scholar 

  3. G. J. Blair, R. D. B. Lefroy, and L. Lisle, “Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems,” Aust. J. Agric. Res. 46 (7), 1459–1466 (1995). https://doi.org/10.1071/AR9951459

    Article  Google Scholar 

  4. N. Blair, R. D. Faulkner, A. R. Till, and P. R. Poulton, “Long-term management impacts on soil C, N and physical fertility: Part I: Broadbalk experiment,” Soil Tillage Res. 91 (1–2), 30–38 (2006). https://doi.org/10.1016/j.still.2005.11.002

    Article  Google Scholar 

  5. S. Chaudhary, G. S. Dheri, and B. S. Brar, “Long-term effects of NPK fertilizers and organic manures on carbon stabilization and management index under rice-wheat crop** system,” Soil Tillage Res. 166, 59–66 (2017). https://doi.org/10.1016/j.still.2016.10.005

    Article  Google Scholar 

  6. A. Datta, B. Mandal, N. Basak, S. Badole, K. Chaitanya, S. P. Majumder, N. P. Thakur, P. Kumar, and D. Kachroo, “Soil carbon pools under long-term rice-wheat crop** system in inceptisols of Indian Himalayas,” Arch. Agron. Soil Sci. 64 (9), 1315–1320 (2018). https://doi.org/10.1080/03650340.2017.1419196

    Article  Google Scholar 

  7. X. L. Ding, X. Z. Han, Y. Liang, Y. F. Qiao, L. J. Li, and N. Li, “Changes in soil organic carbon pools after 10 years of continuous manuring combined with chemical fertilizer in a Mollisol in China,” Soil Tillage Res. 122, 36–41 (2012). https://doi.org/10.1016/j.still.2012.02.002

    Article  Google Scholar 

  8. B. N. Ghosh, V. S. Meena, R. J. Singh, N. M. Alam, S. Patra, R. Bhattacharyya, N. K. Sharma, K. S. Dadhwal, and P. K. Mishra, “Effects of fertilization on soil aggregation, carbon distribution and carbon management index of maize-wheat rotation in the north-western Indian Himalayas,” Ecol. Indic. 105, 415–424 (2019). https://doi.org/10.1016/j.ecolind.2018.02.050

    Article  Google Scholar 

  9. P. K. Ghosh, K. K. Hazra, M. S. Venkatesh, K. K. Singh, N. Kumar, and R. S. Mathur, “Potential of crop residue and fertilizer on enrichment of carbon pools in upland soils of Subtropical India,” Agric. Res. 5 (3), 261–268 (2016). https://doi.org/10.1007/s40003-016-0215-9

    Article  Google Scholar 

  10. W. Gong, X. Y. Yan, J. Y. Wang, T. X. Hu, and Y. B. Gong, “Long-term manuring and fertilization effects on soil organic carbon pools under a wheat-maize crop** system in North China Plain,” Plant Soil 314 (1–2), 67–76 (2009). https://doi.org/10.1007/s11104-008-9705-2

    Article  Google Scholar 

  11. U. Hamer, K. Potthast, and F. Makeschin, “Urea fertilization affected soil organic matter dynamics and microbial community structure in pasture soils of Southern Ecuador,” Appl. Soil Ecol. 43 (2–3), 226–233 (2009). https://doi.org/10.1016/j.apsoil.2009.08.001

    Article  Google Scholar 

  12. R. J. Haynes, “Labile organic matter fractions as central components of the quality of agricultural soils: an overview,” Adv. Agron. 85, 221–268 (2005). https://doi.org/10.1016/S0065-2113(04)85005-3

    Article  Google Scholar 

  13. Climate Change 1995: The Science of Climate Change: Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by J. T. Houghton, L. G. Meiro Filho, B. A. Callander, N. Harris, A. Kattenburg, and K. Maskell (Cambridge University Press, New York, 1996)

    Google Scholar 

  14. J. S. I. Ingram and E. C. M. Fernandes, “Managing carbon sequestration in soils: concept and terminology,” Agric. Ecosyst. Environ. 87 (1), 111–117 (2001). https://doi.org/10.1016/s0167-8809(01)0014

    Article  Google Scholar 

  15. D. W. **g, S. J. **ng, F. C. Liu, H. L. Ma, Z. Y. Du, B. Y. Ma, X. D. Yu, and Y. P. Zhu, “Applied monosodium glutamate wastewater promoting poplar growth, improving soil active organic carbon and carbon pool management index,” Trans. Chin. Soc. Agric. Eng. 32 (1), 124–131 (2016). https://doi.org/10.11975/j.issn.1002-6819.2016.z1.018

    Article  Google Scholar 

  16. R. Lal, “Soil carbon sequestration impact on global climate change and food security,” Science 304 (5677), 1623–1627 (2004). https://doi.org/10.1126/science.1097396

    Article  Google Scholar 

  17. R. D. B. Lefroy, G. J. Blair, and W. M. Strong, “Changes in soil organic matter with crop** as measured by organic carbon fractions and 13C natural isotope abundance,” Plant Soil 155–156 (1), 399–402 (1993). https://doi.org/10.1007/bf00025067

    Article  Google Scholar 

  18. M. Liao, Y. Peng, Y. Chen, X. M. **e, C. Y. Wu, X. Tang, Y. X. Liu, and M. S. Yang, “Effect of long-term different fertilizer management on soil carbon stock characteristics in paddy soil,” J. Soil Water Conserv. 25 (6), 129–138 (2011). https://doi.org/10.13870/j.cnki.stbcxb.2011.06.016

    Article  Google Scholar 

  19. S. Li, Y. B. Li, S. J. Wang, J. L. Shi, and X. H. Tian, “Effects of different straw-returning regimes on soil organic carbon and carbon pool management index in Guanzhong plain, northwest China,” Chin. J. Appl. Ecol. 26 (4), 1215–1222 (2015). https://doi.org/10.13287/j.1001-9332.2015.0035

    Article  Google Scholar 

  20. J. Li, Y. C. Wen, X. H. Li, Y. T. Li, X. D. Yang, Z. A. Lin, Z. Z. Song, J. M. Copper, and B. Q. Zhao, “Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain,” Soil Tillage Res. 175, 281–290 (2018). https://doi.org/10.1016/j.still.2017.08.008

    Article  Google Scholar 

  21. Z. W. Li, X. D. Nie, X. L. Chen, Y. M. Lu, W. G. Jiang, and G. M. Zeng, “The effects of land use and landscape position on labile organic carbon and carbon management index in red soil hilly region, southern China,” J. Mt. Sci. 12 (3), 626–636 (2015). https://doi.org/10.1007/s11629-013-2964-2

    Article  Google Scholar 

  22. K. L. Liu and Y. Z. Li, “Different response of grain yield to soil organic carbon, nitrogen, and phosphorus in Red soil as based on the long-term fertilization experiment,” Eurasian Soil Sci. 51, 1507–1513 (2018). https://doi.org/10.1134/S1064229318130045

    Article  Google Scholar 

  23. W. Logninow, W. Wisniewski, S. S. Gonet, and B. Ciescinska, “Fractionation of organic carbon based on susceptibility to oxidation,” Pol. J. Soil Sci. 20 (1), 47–52 (1987). https://doi.org/10.1128/MCB.24.3.1292-1300.2003

    Article  Google Scholar 

  24. Y. Lou, M. Xu, W. Wang, X. Sun, and C. Liang, “Soil organic carbon fractions and management index after 20 yr of manure and fertilizer application for greenhouse vegetables,” Soil Use Manage. 27 (2), 163–169 (2011). https://doi.org/10.1111/j.1475-2743.2010.00325.x

    Article  Google Scholar 

  25. Y. L. Lou, J. K. Wang, and W. J. Liang, “Impacts of 22-year organic and inorganic N managements on soil organic C fractions in a maize field, northeast China,” Catena 87 (3), 386–390 (2011). https://doi.org/10.1016/j.catena.2011.07.006

    Article  Google Scholar 

  26. W. H. Mi, L. H. Wu, P. C. Brookes, Y. L. Liu, X. Zhang, and X. Yang, “Changes in soil organic carbon fractions under integrated management systems in a low-productivity paddy soil given different organic amendments and chemical fertilizers,” Soil Tillage Res. 163, 64–70 (2016). https://doi.org/10.1016/j.still.2016.05.009

    Article  Google Scholar 

  27. P. C. Moharana, B. M. Sharma, D. R. Biswas, B. S. Dwivedi, and R. V. Singh, “Long-term effect of nutrient management on soil fertility and soil organic carbon pools under a 6-year-old pearl millet-wheat crop** system in an inceptisol of subtropical India,” Field Crop Res. 136, 32–41 (2012). https://doi.org/10.1016/j.fcr.2012.07.002

    Article  Google Scholar 

  28. W. J. Parton, D. S. Schimel, C. V. Cole, and D. Ojima, “Analysis of factors controlling soil oragnic matter levels in great plains grasslands,” Soil Sci. Soc. Am. J. 51 (5), 1173–1179 (1987). https://doi.org/10.2136/sssaj1987.03615995005100050015x

    Article  Google Scholar 

  29. K. Paustian, J. Six, E. T. Elliott, and H. W. Hunt, “Management options for reducing CO2 emissions from agricultural soils,” Biochemistry 48 (1), 147–163 (2000). https://doi.org/10.1023/a:1006271331703

    Article  Google Scholar 

  30. J. Peng, E. Ci, Z. W. Fu, M. Gao, and D. T. **e, “Effects of conservation tillage on organic carbon and carbon management index in paddy soil,” Appl. Mech. Mater. 71–78, 2759–2762 (2011). https://doi.org/10.4028/www.scientific.net/AMM.71-78.2759

  31. V. Poirier, D. A. Angers, P. Rochette, and J. K. Whalen, “Initial soil organic carbon concentration influences the short-term retention of crop-residue carbon in the fine fraction of a heavy clay soil,” Biol. Fertil. Soil 49 (5), 527–535 (2013). https://doi.org/10.1007/s00374-013-0794-6

    Article  Google Scholar 

  32. R. R. Ratnayake, T. Roshanthan, N. Gnanavelrajah, and S. B. Karunaratne, “Organic carbon fractions, aggregate stability, and available nutrients in soil and their interrelationships in tropical crop** systems: a case study,” Eurasian Soil Sci. 52, 1542–1554 (2019). https://doi.org/10.1134/S1064229319120123

    Article  Google Scholar 

  33. L. Rudrappa, T. J. Purakayastha, D. Singh, and S. Bhadraray, “Long-term manuring and fertilization effects on soil organic carbon pools in a typic haplustept of semi-arid sub-tropical India,” Soil Tillage Res. 88 (1–2), 180–192 (2006). https://doi.org/10.1016/j.still.2005.05.008

    Article  Google Scholar 

  34. S. Sandeep, K. M. Manjaiah, S. Pal, and A. K. Singh, “Soil carbon fractions under maize-wheat system: effect of tillage and nutrient management,” Environ. Monit. Assess. 188 (1), 1–14 (2016). https://doi.org/10.1007/s10661-015-4995-3

    Article  Google Scholar 

  35. V. M. Semenov, N. B. Pautova, T. N. Lebedeva, D. P. Khromychkina, N. A. Semenova, and V. O. Lopes de Gerenyu, “Plant residues decomposition and formation of active organic matter in the soil of the incubation experiments,” Eurasian Soil Sci. 52, 1183–1194 (2019). https://doi.org/10.1134/S1064229319100119

    Article  Google Scholar 

  36. H. Shen, Z. H. Cao, and Z. H. Xu, “Effects of fertilization on different carbon fractions and carbon pool management index in soils,” Acta Pedol. Sin. 37 (2), 166–173 (2000).

    Google Scholar 

  37. G. P. S. Sodhi, V. Beri, and D. K. Bendi, “Using carbon management index to assess the impact of compost application on changes in soil carbon after ten years of rice-wheat crop**,” Commun. Soil Sci. Plant Anal. 40 (21–22), 3491–3502 (2009). https://doi.org/10.1080/00103620903326024

    Article  Google Scholar 

  38. H. M. Tang, X. P. ** rice system in southern China,” Commun. Soil Sci. Plant Anal. 49 (16), 1976–1989 (2018). https://doi.org/10.1080/00103624.2018.1492600

    Article  Google Scholar 

  39. A. Tirolpadre and J. K. Ladha, “Assessing the reliability of permanganate-oxidizable carbon as an index of soil labile carbon,” Soil Sci. Soc. Am. J. 68 (3), 969–978 (2004). https://doi.org/10.2136/sssaj2004.0969

    Article  Google Scholar 

  40. S. Verma and P. K. Sharma, “Effect of long-term manuring and fertilizers on carbon pools, soil structure, and sustainability under different crop** systems in wet-temperate zone of northwest Himalayas,” Biol. Fertil. Soils 44 (1), 235–240 (2007). https://doi.org/10.1007/s00374-007-0207-9

    Article  Google Scholar 

  41. G. L. Wang, L. K. Li, and M. D. Hao, “Effect of long-term fertilization and straw mulch on the contents of labile organic matter and carbon management index,” J. Plant Nutr. Fertil. 23 (1), 20–26 (2017).

    Google Scholar 

  42. X. L. Wang, T. X. Mo, C. Z. Qiu, X. L. Liu, W. Chen, J. C. Yuan, X. Zhang, and F. L. Kong, “Effect of nitrogen reduction with organic fertilizer application on soil carbon pool management index and maize yield,” Ecol. Environ. Sci. 26 (8), 1342–1348 (2017). https://doi.org/10.16258/j.cnki.1674-5906.2017.08.009

    Article  Google Scholar 

  43. J. K. Whalen, S. Gul, V. Poirier, S. F. Yanni, M. J. Simpson, J. S. Clemente, et al., “Transforming plant carbon into soil carbon: Process-level controls on carbon sequestration,” Can. J. Plant Sci. 94 (6), 1065–1073 (2014). https://doi.org/10.4141/cjps2013-145

    Article  Google Scholar 

  44. T. Y. Wu, J. J. Schoenau, F. Li, P. Qian, S. S. Malhi, and Y. Shi, “Influence of fertilization and organic amendments on organic-carbon fractions in Heilu soil on the loess plateau of China,” J. Plant Nutr. Soil Sci. 168 (1), 100–107(2015). https://doi.org/10.1002/jpln.200321295

    Article  Google Scholar 

  45. M. G. Xu, R. Yu, and B. R. Wang, “Progress on the study of soil active organic matter,” Soils Fertil. 6, 3–7 (2000).

    Google Scholar 

  46. M. G. Xu, R. Yu, X. F. Sun, H. Liu, B. R. Wang, and J. M. Li, “Effects of long-term fertilization on labile organic matter and carbon management index (CMI) of the typical soils of China,” Plant Nutr. Fertil. Sci. 12 (4), 459–465 (2006).

    Google Scholar 

  47. B. J. Yang, G. Q. Huang, Y. Lan, H. J. Chen, and S. B. Wang, “Effects of nitrogen application and winter green manure on soil active organic and the soil carbon pool management index,” Chin. J. Appl. Ecol. 25 (10), 2907–2913 (2014). https://doi.org/10.13287/j.1001-9332.20140801.013

    Article  Google Scholar 

  48. J. H. Yang, C. L. Wang, and H. L. Dai, Agricultural Soil Analysis and Environmental Monitoring (China Land Press, Bei**g, 2008), pp. 48–79.

    Google Scholar 

  49. M. F. Yang, L. Q. Zhu, X. Z. Han, K. J. Gu, N. J. Hu, and X. M. Bian, “Short-term effects of different tillage modes combined with straw-returning on the soil labile organic carbon components in a farmland with rice-wheat double crop**,” Chin. J. Appl. Ecol. 24 (5), 1387–1393 (2013). https://doi.org/10.13287/j.1001-9332.2013.0304

    Article  Google Scholar 

  50. Y. R. Zhang, Y. Li, Y. L. Liu, W. A. Zhang, and T. M. Jiang, “Effects of long-term fertilization on soil organic carbon balance and maize yield in yellow soil,” Acta Pedol. Sin. 53 (5), 1275–1285 (2016).

    Google Scholar 

  51. Y. R. Zhang, Y. Li, Y. L. Liu, X. C. Huang, W. A. Zhang, and T. M. Jiang, “Evolution and sequestration characteristics of organic carbon pool in yellow soil under long-term fertilization,” Southwest China J. Agric. Sci. 31 (4), 770–778 (2018). https://doi.org/10.16213/j.cnki.scjas.2018.4.022

    Article  Google Scholar 

  52. Y. Zhao, X. N. Guo, J. H. Luo, X. Q. Chen, and Y. Ma, “Soil organic carbon and carbon management index affected by the different fertilization methods in the field of irrigation silting soils,” Agric. Res. Arid Area 34 (3), 16–22 (2016).

    Google Scholar 

  53. L. Q. Zhu, N. J. Hu, Z. W. Zhang, J. L. Xu, B. R. Tao, and Y. L. Meng, “Short-term responses of soil organic carbon and carbon pool management index to different annual straw return rates in a rice-wheat crop** system,” Catena 135, 283–289 (2015). https://doi.org/10.1016/j.catena.2015.08.008

    Article  Google Scholar 

  54. X. M. Zou, H. H. Ruan, Y. Fu, X. D. Yang, and L. Q. Sha, “Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation-incubation procedure,” Soil Biol. Biochem. 37 (10), 1923–1928 (2005). https://doi.org/10.1016/j.soilbio.2005.02.028

    Article  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (no. 41461069); the Science and Technology Project of Guizhou Province [(2017)2852]; the Project of the Technological Innovation of Guizhou Academy of Agricultural Sciences (201706); the Project of Science and Technology Innovation Talents Team of Guizhou (20185604) and the Natural Science Foundation of China (no. 31860132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiming Jiang.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, Y., Liu, Y. et al. Responses of Soil Labile Organic Carbon and Carbon Management Index to Different Long-Term Fertilization Treatments in a Typical Yellow Soil Region. Eurasian Soil Sc. 54, 605–618 (2021). https://doi.org/10.1134/S1064229321040189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321040189

Keywords:

Navigation