Log in

Erosion as a Factor of Transformation of Soil Radioactive Contamination in the Basin of the Shchekino Reservoir (Tula Region)

  • SOIL ЕROSION
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Redistribution of sediments and Chernobyl-derived 137Сs transported with them were estimated using a set of field methods and erosion model calculations for the Shchekino reservoir (Tula region) catchment, and changes in the contents of 137Сs in soils of various types that occurred over 1986–2018 were determined. The rate of snowmelt soil erosion on arable land during this period has decreased by about a half in comparison with that in 1960–1985 due to a reduction in soil freezing depth in winter. The rainfall erosion rate increased by about a third between 1986–2003 due to an increase in the rainfall erosivity index; after that, it tended to decrease synchronously with a decrease in the rainfall erosivity. The total average annual soil loss related to water erosion varies in the range of 1.3–1.6 t ha–1 depending on the soil type. The erosional loss of 137Сs from arable land averaged 1.5–2% of its total inventory, which decreased by more than a half in comparison with the initial inventory in May 1986 due to natural decay. On 0.4% of the arable land with maximum rates of erosion, the decrease in the 137Сs inventory reached 12–40% from the initial inventory. More than 90% of 137Сs washed away with sediments from arable lands were redeposited along the transportation pathway from arable fields to permanent streams. The total soil 137Сs inventory exceeded its initial inventory at the time of fallout from the atmosphere in May 1986 in the bottoms of hollows in areas from the lower edge of the arable land to the upper reaches of dry first-order valleys due to high sedimentation rates. The 137Сs inventory exceeded the lower threshold of permissible radioactive contamination of soils (37 kBq m–2) also in some other sediment sinks (bottoms of dry valleys, foot of plowed slopes, and a low floodplain of rivers) due to the accumulation of contaminated sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. O. N. Bulygina, V. N. Razuvaev, N. N. Korshunova, and N. V. Shvets, Automated information system for processing regime information (AISORI). http://aisori. m-eteo.ru/ ClimateR.

  2. R. M. Aleksakhin, “Radioactive contamination as a type of soil degradation,” Eurasian Soil Sci. 42, 1386–1396 (2009).

    Article  Google Scholar 

  3. V. S. Anisimov, N. I. Sanzharova, and R. M. Aleksakhin, “The forms of occurrence and vertical distribution of 137Cs in soils in the accident zone of the Chernobyl nuclear power plant, Pochvovedenie, No. 9, 31–40 (1991).

    Google Scholar 

  4. The Atlas of Recent and Predictable Consequences of Chernobyl Accident on Polluted Territories of Russia and Belarus (ARPA Russia-Belarus, Moscow, 2009) [in Russian].

  5. I. D. Braude, “Nature of spotty patterns of arable soils on slopes and their melioration,” Pochvovedenie, No. 12, 89–97 (1991).

    Google Scholar 

  6. V. P. Gerasimenko, “Water erosion of soils in various regions of the European part of the Soviet Union,” Pochvovedenie, No. 12, 96–109 (1987).

    Google Scholar 

  7. V. N. Golosov, “Erosive-accumulative processes and sediment budget in the Protva River basin,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 6, 19–25 (1988).

  8. A. M. Grin, “Stationary studies of runoff and soil washing processes,” in Modern Exogenic Processes of Relief Development (Nauka, Moscow, 1970), pp. 89–95.

    Google Scholar 

  9. Unified State Register of Soil Resources of Russia. http:// atlas.mcx.ru/materials/egrpr/content/1sem.html.

  10. M. A. Ivanov, A. V. Prishchepov, V. N. Golosov, E. E. Zalyaliev, K. V. Efimov, A. A. Kondrat’eva, A. D. Kinyashova, and Yu. K. Ionova, “Map** of the dynamics of arable lands in the river basins of the European part of Russia in 1985–2015,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 14 (5), 161–171 (2017).

    Article  Google Scholar 

  11. M. M. Ivanov, A. L. Gurinov, N. N. Ivanova, A. V. Konoplev, E. A. Konstantinov, N. V. Kuz’menkova, E. V. Terskaya, and V. N. Golosov, “Dynamics of 137Cs accumulation in the bottom sediments of the Sheckino Reservoir during post-Chernobyl period,” Radiats. Biol., Radioekol. 59 (6), 651–663 (2019).

    Google Scholar 

  12. G. A. Larionov, Erosion and Deflation of Soils: General Patterns and Quantitative Assessment (Moscow State Univ., Moscow, 1993) [in Russian].

    Google Scholar 

  13. L. F. Litvin, Geography of Erosion of Agricultural Soils in Russia (Akademkniga, Moscow, 2002) [in Russian].

    Google Scholar 

  14. L. F. Litvin, V. N. Golosov, N. G. Dobrovol’skaya, N. I. Ivanova, Z. P. Kiryukhina, and S. F. Krasnov, “Stationary studies of soil erosion during snow melting in the central nonchernozemic region,” in Soil Erosion and Channel Processes (Moscow State Univ., Moscow, 1998), Vol. 11, pp. 57–76.

    Google Scholar 

  15. L. F. Litvin, Z. P. Kiryukhina, S. F. Krasnov, and N. G. Dobrovol’skaya, “Dynamics of agricultural soil erosion in European Russia,” Eurasian Soil Sci. 50, 1344–1353.

  16. A. I. Ratnikov, “Geomorphological and agropedogenic regions of Tula oblast,” in Soil Zonation of USSR (Moscow State Univ., Moscow, 1960), pp. 92–115.

    Google Scholar 

  17. A. Yu. Sidorchuk, “Sediment balance in erosional-channel systems,” Geomorfologiya, No. 1, 14–21 (2015).

    Google Scholar 

  18. A. V. Khristoforov, N. M. Yumina, and P. A. Belyakova, “A day-before forecast of rainstorm floods for of rivers of the Black Sea coast of the Caucasus, Vestn. Mosk. Univ., Ser. 5: Geogr., No. 3, 50–57 (2015).

  19. E. N. Shamshurina, V. N. Golosov, and M. M. Ivanov, “Spatiotemporal reconstruction of the deposition of Chernobyl 137Cs on the soil cover in the upper reaches of the Lokna River basin,” Radiats. Biol., Radioekol., No. 4, 414–425 (2016).

  20. A. T. Barabanov, S. V. Dolgov, N. I. Koronkevich, V. I. Panov, and A. I. Petel’ko, “Surface runoff and snowmelt infiltration into the soil on plowlands in the forest-steppe and steppe zones of the East European Plain,” Eurasian Soil Sci. 1, 66–72 (2018).

    Article  Google Scholar 

  21. V. R. Belyaev, V. N. Golosov, K. S. Kislenko, J. S. Kuznetsova, and M. V. Markelov, “Combining direct observations, modeling, and 137Cs tracer for evaluating individual event contribution to long-term sediment budgets,” in Sediment Dynamics and the Hydromorphology of Fluvial Systems, IAHS Publication no. 325 (International Association of Hydrological Sciences, Wallingford, 2008), pp. 114–122.

  22. V. R. Belyaev, V. N. Golosov, M. V. Markelov, O. Evrard, N. N. Ivanova, T. A. Paramonova, and E. N. Shamshurina, “Using Chernobyl-derived 137Cs to document recent sediment deposition rates on the River Plava floodplain (Central European Russia),” Hydrol. Process. 27, 807–821 (2013).

    Article  Google Scholar 

  23. R. Benavidez, B. Jackson, D. Maxwell, and K. Norton, “A review of the (Revised) Universal Soil Loss Equation ((R)USLE): with a view to increasing its global applicability and improving soil loss estimates,” Hydrol. Earth Syst. Sci. 22 (11), 6059–6086 (2018). https://doi.org/10.5194/hess-22-6059-2018

    Article  Google Scholar 

  24. L. Borselli, P. Cassi, and D. Torri, “Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment,” Catena 75 (3), 268–277 (2008). https://doi.org/10.1016/j.catena.2008.07.006

    Article  Google Scholar 

  25. M. Bossard, J. Feranec, and J. Otahel, CORINE Land Cover Technical Guide—Addendum 2000: Technical Report No. 40 (European Environmental Agency, Copenhagen, 2000). http://terrestrial.eionet.eu.int.

    Google Scholar 

  26. G. Buttner, J. Feranec, G. Jaffrain, L. Mari, G. Maucha, and T. Soukup, “The CORINE land cover 2000 project,” EARSeL Proc. 3 (3), 331–346 (2004).

  27. O. Conrad, B. Bechtel, M. Bock, H. Dietrich, E. Fischer, L. Gerlitz, J. Wehberg, V. Wichmann, and J. Böhner, “System for Automated Geoscientific Analyses (SAGA) v. 2.1.4,” Geosci. Model Dev. 8 (7), 1991–2007 (2015). https://doi.org/10.5194/gmd-8-1991-2015

    Article  Google Scholar 

  28. M. De Cort, G. Dubois, Sh. D. Fridman, M. G. Germenchuk, Yu. A. Izrael, A. Janssens, A. R. Jones, G. N. Kelly, E. V. Kvasnikova, I. I. Matveenko, I. M. Nazarov, Yu. M. Pokumeiko, V. A. Sitak, E. D. Stukin, L. Ya. Tabachny, Yu. S. Tsaturov, and S. I. Avdyushin, Atlas of Cesium Deposition on Europe after the Chernobyl Accident: European Commission Report EUR 16733 (European Commission, Luxembourg, 1998).

    Google Scholar 

  29. M. Delmas, L. T. Pak, O. Cerdan, V. Souchère, Y. Le Bissonnais, A. Couturier, and L. Sorel, “Erosion and sediment budget across scale: a case study in a catchment of the European loess belt,” J. Hydrol. 420–421, 255–263 (2012). https://doi.org/10.1016/j.jhydrol.2011.12.008

    Article  Google Scholar 

  30. P. Desmet and G. Govers, “A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units,” J. Soil Water Conserv. 51 (5), 427–433 (1996).

    Google Scholar 

  31. O. Evrard, J. P. Laceby, H. Lepage, Y. Onda, O. Cerdan, and S. Ayrault, “Radiocesium transfer from hillslopes to the Pacific Ocean after the Fukushima Nuclear Power Plant accident: a review,” J. Environ. Radioact. 148, 92–110 (2015).

    Article  Google Scholar 

  32. V. N. Golosov, “Special considerations for areas affected by Chernobyl fallout,” in Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides (Kluwer, Dordrecht, 2002), pp. 165–183.

    Google Scholar 

  33. V. N. Golosov, “Influence of different factors on the sediment yield of the Oka basin rivers (central Russia),” in Sediment Dynamics and the Hydromorphology of Fluvial Systems, IAHS Publication no. 306 (International Association of Hydrological Sciences, Wallingford, 2006), pp. 28–36.

  34. V. N. Golosov, N. N. Ivanova, A. V. Gusarov, and A. G. Sharifullin, “Assessment of the trend of degradation of arable soils on the basis of data on the rate of stratozem development obtained with the use of 137Cs as a Chronomarker,” Eurasian Soil Sci. 50, 1195–1208 (2017).

    Article  Google Scholar 

  35. M. A. Komissarov and S. Ogura, “Distribution and migration of radiocesium in slo** landscapes three years after the Fukushima-1 nuclear accident,” Eurasian Soil Sci. 50, 861–871 (2017). https://doi.org/10.1134/S1064229317070043

    Article  Google Scholar 

  36. A. Konoplev, Y. Wakiyama, T. Wada, V. Golosov, K. Nanba, and T. Takase, “Radiocesium in ponds of the proximity to the Fukushima Daiichi NPP,” Water Res. 45, 589–597 (2018).

    Article  Google Scholar 

  37. V. G. Linnik, I. V. Mironenko, N. I. Volkova, and A. V. Sokolov, “Landscape–biogeochemical factors of transformation of the Cs-137 contamination field in the Bryansk region,” Geochem. Int. 55, 887–901 (2017).

    Article  Google Scholar 

  38. K. A. Maltsev and O. P. Yermolaev, “Potential soil loss from erosion on arable lands in the European part of Russia,” Eurasian Soil Sci. 52, 1588–1597 (2019).

    Article  Google Scholar 

  39. S. V. Mamikhin, V. N. Golosov, T. A. Paramonova, E. N. Shamshurina, and M. M. Ivanov, “Vertical distribution of 137Cs in alluvial soils of the Lokna River floodplain (Tula oblast) long after the Chernobyl accident and its simulation,” Eurasian Soil Sci. 49, 1432–1442 (2016). https://doi.org/10.1134/S1064229316120103

    Article  Google Scholar 

  40. V. Naipal, C. Reick, J. Pongratz, and K. van Oost, “Improving the global applicability of the RUSLE model—Adjustment of the topographical and rainfall erosivity factors,” Geosci. Model Dev. 8 (9), 2893–2913 (2015). https://doi.org/10.5194/gmd-8-2893-2015

    Article  Google Scholar 

  41. M. H. Paller, G. T. Jannik, and P. D. Fledderman, “Changes in 137Cs concentrations in soil and vegetation on the floodplain of the Savannah River over a 30 year period,” J. Environ. Radioact. 99, 1302–1310 (2008). https://doi.org/10.1016/j.jenvrad.2008.04.001

    Article  Google Scholar 

  42. P. Panagos, P. Borelli, K. Meusburger, B. Yu, A. Klik, K. J. Lim, J. E. Yang, et al., “Global rainfall erosivity assessment based on high-temporal resolution rainfall records,” Sci. Rep. 7, 4175 (2017). https://doi.org/10.1038/s41598-017-04282-8

    Article  Google Scholar 

  43. P. Panagos, P. Borrelli, and K. Meusburger, “A new European slope length and steepness factor (LS-factor) for modeling soil erosion by water,” Geosciences 5, 117–126 (2015). https://doi.org/10.3390/geosciences5020117

    Article  Google Scholar 

  44. P. Panagos, P. Borrelli, K. Meusburger, C. Alewell, E. Lugato, and L. Montanarella, “Estimating the soil erosion cover-management factor at the European scale,” Land Use Policy 48, 38–50 (2015). https://doi.org/10.1016/j.landusepol.2015.05.021

    Article  Google Scholar 

  45. M. C. Peel, B. L. Finlayson, and T. A. Mcmahon, “Updated world map of the Köppen-Geiger climate classification,” Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).

    Article  Google Scholar 

  46. K. G. Renard, G. R. Foster, G. A. Weesies, D. K. McCool, and D. C. Yoder, Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), Agricultural Handbook no. 703 (US Governmental Printing Office, Washington, DC, 1997), p. 404. https://doi.org/DC0–16–048938-5 65–100.

  47. A. Varley, A. Tyler, Y. Bondar, A. Hosseini, V. Zabrotski, and M. Dowdall, “Reconstructing the deposition environment and long-term fate of Chernobyl 137Cs at the floodplain scale through mobile gamma spectrometry,” Environ. Pollut. 240, 191–199 (2018).

    Article  Google Scholar 

  48. O. Vigiak, L. Borselli, L. T. H. Newham, J. McInnes, and A. M. Roberts, “Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio,” Geomorphology 138 (1), 74–88 (2012). https://doi.org/10.1016/j.geomorph.2011.08.026

    Article  Google Scholar 

  49. L. Wang and H. Liu, “An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modeling,” Int. J. Geogr. Inf. Sci. 20 (2), 193–213 (2006). https://doi.org/10.1080/13658810500433453

    Article  Google Scholar 

  50. J. R. Williams, “The EPIC model,” in Computer Models of Watershed Hydrology, Ed. by V. P. Singh (Water Resources, Highlands Ranch, CO, 1995), chap. 25, pp. 909–1000.

    Google Scholar 

  51. W. H. Wischmeier, D. D. Smith, and R. E. Uhland, “Evaluation of factors in the soil loss equation,” Agric. Eng. 39 (8), 458–462 (1958).

    Google Scholar 

  52. S. Wu, J. Li, and G. Huang, “An evaluation of grid size uncertainty in empirical soil loss modeling with digital elevation models,” Environ. Model. Assess. 10 (1), 33–42 (2005).

    Article  Google Scholar 

  53. Automated information system for state monitoring of water bodies. https://gmvo.skniivh.ru.

  54. ALOS Global Digital Surface Model: ALOS World 3D–30m (AW3D30). https://www.eorc.jaxa.jp/ALOS/en/ aw3d30/index.htm.

Download references

ACKNOWLEDGMENTS

The authors would like to thank the General Director of the Shchekinskaya Electric Power Station A.V. Karpunin for providing a bathymetric map of the Shchekino reservoir and Ph.D. A.L. Gurinov and Ph.D. N.V. Kuzmenkova for participation in fieldwork on sampling bottom sediments.

Funding

This study was carried out in agreement with the state assignment of the Makkaveev Laboratory of Soil Erosion and Fluvial Processes at the Faculty of Geography of Lomonosov Moscow State University (registration no. AAAA-A16-116032810084-0) and partly supported by the Russian Foundation for Basic Research (project no. 18-55-50002 yaf).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Ivanova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by V. Klyueva

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golosov, V.N., Ivanov, M.M., Tsyplenkov, A.S. et al. Erosion as a Factor of Transformation of Soil Radioactive Contamination in the Basin of the Shchekino Reservoir (Tula Region). Eurasian Soil Sc. 54, 291–303 (2021). https://doi.org/10.1134/S106422932102006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422932102006X

Keywords:

Navigation