Log in

Extreme Pedology: Elements of Theory and Methodological Approaches

  • GENESIS AND GEOGRAPHY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Extreme environmental conditions that occur in Arctic, Antarctic, high mountains, extremely arid regions, as well as in toxic or nutrient-poor substrates, shallow waters, under intense anthropogenic impact, and in specific atmosphere or its absence in extraterrestrial systems, lead to the formation of soils and soloids (soil-like bodies) that cannot be adequately described, and their genesis and geography cannot be satisfactorily explained within the framework of the traditional Dokuchaev’s pedology. A new scientific direction is proposed—extreme pedology (genesis and geography of soils in extreme environments), which requires its own theory, conceptual apparatus, and methodological basis. It is based on the assumption that soils and soloids can develop in extreme conditions under the deficit or surplus of resources. In the first case, soloids are just few millimeters thick; in the second case, they have the profiles of multimeter scale. Various classes of soils and soloids extremeness are specified: factorial, regime-functional, and chorological (extra-areal). The behavior of extreme objects in time and the nature of their pedogenic records can have both specific and common features with normal soils. Morphological and analytical study of soils and soloids of extreme environments requires state-of-the-art methodological approaches and scientific equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. Certainly, only a small part of ferrallitic soils—those with undifferentiated profile—can be attributed to extreme soils.

REFERENCES

  1. E. V. Abakumov, Doctoral Dissertation in Biology (Tolyatti, 2012).

  2. A. L. Aleksandrovskii, “Paleopedogenesis in extreme climate conditions of the Late Glacial period and Holocene,” in Arctic and Subarctic: Diversity, Contrasts, and Variability of Cryosphere (Epokha, Tyumen, 2015), pp. 6–11.

  3. V. S. Artamonova and S. B. Bortnikova, “Soil-like formations in technogenic landscapes: study history, terminology, and modern aspects. A review,” Teor. Prikl. Ekol., No. 1, 4–13 (2017).

  4. A. N. Gennadiev, A. R. Geptner, A. P. Zhidkin, S. S. Chernyanskii, and Yu. I. Pikovskii, “Exothermic and endothermic soils of Iceland,” Eurasian Soil Sci. 40, 595–607 (2007).

    Article  Google Scholar 

  5. M. I. Gerasimova, M. N. Stroganova, N. V. Mozharova, and T. V. Prof’eva, Anthropogenic Soils: Genesis, Geography, and Reclamation (Oikumena, Smolensk, 2003) [in Russian].

    Google Scholar 

  6. M. A. Glazovskaya, “Influence of microorganisms on weathering of primary minerals,” Izv. Akad. Nauk Kaz. SSR, Ser. Pochvoved., No. 6, 79–100 (1950).

  7. D. L. Golovanov, M. P. Lebedeva-Verba, M. F. Dorokhova, and A. I. Slobodkin, “Micromorphological and microbiological characterization of elementary soil-forming processes in desert soils of Mongolia,” Eurasian Soil Sci. 38, 1290–1300 (2005).

    Google Scholar 

  8. I. L. Gol’dfarb, Candidate’s Dissertation in Geography (Moscow, 2005).

  9. A. A. Gol’eva, “Soils in disaster sites as a particular case of pedogenesis under extreme conditions,” in VII Congress of Dokuchaev Society of Soil Scientists “Soil Science to Food and Ecological Security of Russia” (Moscow–Belgorod, 2016), Vol. 2, pp. 258–259.

  10. A. A. Gol’eva and Yu. A. Bondareva, “Soils of archeological monuments in the forest zone as the soils of disaster sites,” Lesovedenie, No. 3, pp. 205–211 (2017).

  11. S. V. Goryachkin, “Soil science and geography of soils of extreme habitats: problems and prospects of development,” in Proceedings of the All-Russia Conference with International Participation “Multiple Research and Collaboration in the Arctic: Interaction of Higher Education Institutions with Scientific Research Institutions” (Northern (Arctic) Federal University, Arkhangelsk, 2015), pp. 79–82.

  12. S. V. Goryachkin, A. V. Dolgikh, N. S. Mergelov, “Soils of the Frank Josef Land Islands: geography, morphogenetic features, classification, and role in carbon cycle,” in Joint Research and Educational Expedition “Arctic Floating University–2017” (KIRA, Arkhangelsk, 2017), pp. 15–36.

  13. S. V. Goryachkin, I. A. Spiridonova, S. N. Sedov, and V. O. Targulian, “Boreal soils on hard gypsum rocks: morphology, properties, and genesis,” Eurasian Soil Sci. 36, 691–703 (2003).

    Google Scholar 

  14. E. A. Dmitriev, “Soils and soil-like bodies,” Eurasian Soil Sci. 29, 275–282 (1996).

    Google Scholar 

  15. G. V. Dobrovol’skii and S. Ya. Trofimov, Systematics and Classification of Soils: History and Current State (Moscow, 1996) [in Russian].

  16. V. V. Dokuchaev, “Milestones in the history of land survey in European Russia with classification of Russian soils,” in Materials for Assessment of Lands in the Nizhny Novgorod Gubernia. Nature-Historical Part (St. Petersburg, 1886), No. 1.

  17. A. V. Dolgikh and A. L. Aleksandrovskii, “Soils and cultural layers in Velikii Novgorod,” Eurasian Soil Sci. 43, 477–487 (2010).

    Article  Google Scholar 

  18. Monitoring of Greenhouse Gas Fluxes in Natural Ecosystems, Ed. by D. G. Zamolodchikov, D. V. Karelin, M. L. Gitarskii, and V. G. Blinov (Amirit, Saratov, 2017) [in Russian].

    Google Scholar 

  19. A. M. Ivlev and O. V. Nesterova, “On the study of Aquasols,” Vestn. Dal’nevost. Otd., Ross. Akad. Nauk, No. 4, 47–52 (2004).

    Google Scholar 

  20. N. S. Kasimov, M. S. Kasatenkova, A. N. Tkachenko, M. Yu. Lychagin, and S. B. Kroonenberg, Geochemistry of Lagoon-Wetland and Delta Landscapes of the Caspian Region (APR, Moscow, 2016) [in Russian].

  21. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  22. P. V. Krasilnikov and O. K. Fomin, “Mechanisms of potassium and sodium fixation in extremely acid taiga soils,” Eurasian Soil Sci. 33, 703–708 (2000).

    Google Scholar 

  23. P. V. Krasilnikov and S. A. Shoba, Acid Sulfate Soils of Eastern Fennoscandia (Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, 1997) [in Russian].

    Google Scholar 

  24. S. N. Lesovaya, S. V. Goryachkin, and Yu. S. Polekhovskii, “Soil formation and weathering on ultramafic rocks in the mountainous tundra of the Rai-Iz massif, Polar Urals,” Eurasian Soil Sci. 45, 33–44 (2012).

    Article  Google Scholar 

  25. A. O. Makeev, Surface Paleosols of Loess Interfluves of the Russian Plain (Molnet, Moscow, 2012) [in Russian].

    Google Scholar 

  26. A. O. Makeev, “Ecological role of paleosols in geological history of the Earth,” in Soils in the Biosphere and Human Life (Moscow State Forest University, Moscow, 2012), pp. 183–283.

    Google Scholar 

  27. N. S. Mergelov, S. V. Goryachkin, I. G. Shorkunov, E. P. Zazovskaya, and A. E. Cherkinsky, “Endolithic pedogenesis and rock varnish on massive crystalline rocks in East Antarctica,” Eurasian Soil Sci. 45, 901–917 (2012).

    Article  Google Scholar 

  28. B. B. Polynov, Weathering Crust (Academy of Sciences of USSR, Leningrad, 1934) [in Russian].

    Google Scholar 

  29. B. B. Polynov, “First stages of pedogenesis on massive crystalline rocks,” Pochvovedenie, No. 7, 327–339 (1945).

    Google Scholar 

  30. A. A. Semikolennykh, I. A. Spiridonova, T. Yu. Tuyukina, L. V. Puchnina, E. V. Shavrina, and S. V. Goryachkin Extreme Ecosystems and Soils of Open Gypsum-Karst Landscapes of the Taiga of European North (Media-Press, Moscow, 2015) [in Russian].

    Google Scholar 

  31. A. A. Semikolennykh and V. O. Targulian, “Soil-like bodies of autochemolithotrophic ecosystems in the caves of the Kugitangtau Ridge, Eastern Turkmenistan,” Eurasian Soil Sci. 43, 614–627 (2010).

    Article  Google Scholar 

  32. A. V. Smagin, A. V. Dolgikh, and D. V. Karelin, “Experimental studies and physically substantiated model of carbon dioxide emission from the exposed cultural layer of Velikii Novgorod,” Eurasian Soil Sci. 49, 450–456 (2016).

    Article  Google Scholar 

  33. I. A. Sokolov, “Basic substantive-genetic classification of soils,” Pochvovedenie, No. 3, 107–121 (1991).

    Google Scholar 

  34. I. A. Sokolov, “What is soil and what is soil science?” in Theoretical Problems of Pedology (Gumanitarnye Tekhnologii, Novosibirsk, 2004), pp. 9–22.

    Google Scholar 

  35. I. A. Spiridonova and S. V. Goryachkin, “Denudation of the surface and weathering of gypsum in cold humid climate and their impact on pedogenesis,” in Proceedings of the International Conference “Northern Karst Systems in Our Changing Environment,” Golubino–Pinega, Arkhangelsk Oblast, Russia, September 5–10, 2011 (Moscow, 2011), pp. 91–95.

  36. V. O. Targulian, “Exogenesis and pedogenesis: extension of the theoretical base of soil science,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 3, 33–43 (1983).

  37. Soil Memory: Soil as Memory of Biospheric-Geosphere-Anthropospheric Interactions, Ed. by V. O. Targulian and S. V. Goryachkin (LKI, Moscow, 2008) [in Russian].

    Google Scholar 

  38. V. O. Targulian, N. S. Mergelov, and S. V. Goryachkin, “Soil-like bodies on Mars,” Eurasian Soil Sci. 50, 185–197 (2017).

    Article  Google Scholar 

  39. V. M. Fridland, Geography, Genesis, and Classification of Soils (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  40. M. A. Tseits and D. V. Dobrynin, “Morphogenetic diagnostics and classification of tidal marsh soils in Karelia (White Sea coast),” Eurasian Soil Sci. 30, 352–357 (1997).

    Google Scholar 

  41. S. A. Shlyakhov and N. M. Kostenkov, “Classification and morphological peculiarities of coastal soils,” Eurasian Soil Sci. 31, 1043–1049 (1998).

    Google Scholar 

  42. W. W. Barker, S. A. Welch, S. Chu, and J. F. Banfield, “Experimental observations of the effects of bacteria on aluminosilicate weathering,” Am. Miner. 83, 1551–1563 (1998).

    Article  Google Scholar 

  43. J. Belnap, B. Budel, and O. L. Lange, “Biological soil crust: characteristics and distribution,” Ecol. Stud. 150, 3–30 (2003).

    Article  Google Scholar 

  44. Geoecology of Antarctic Ice-Free Coastal Landscapes, Ed. by L. Beyer and M. Boelter (Springer-Verlag, Berlin, 2002).

    Google Scholar 

  45. J. G. Bockheim, “Soil endemism and its relation to soil formation theory,” Geoderma 129, 109–124 (2005).

    Article  Google Scholar 

  46. The Soils of Antarctica, Ed. by J. G. Bockheim (Springer-Verlag, Berlin, 2015).

    Google Scholar 

  47. P. Charzyński, M. Markiewicz, and M. Świtoniak, Technogenic Soils Atlas (Polish Society of Soil Science, Toruń, 2013).

    Google Scholar 

  48. J. Chen, H. P. Blume, and L. Beyer, “Weathering of rocks induced by lichen colonization—a review,” Catena 39, 121–146 (2000).

    Article  Google Scholar 

  49. Microbiology of Extreme Soils, Ed. by P. Dion and C.  Nautiyal (Springer-Verlag, Berlin, 2008).

    Google Scholar 

  50. R. I. Dorn, “Rock coatings,” in Treatise on Geomorphology, Vol. 4: Weathering and Soils Geomorphology (Elsevier, Amsterdam, 2013), pp. 70–97.

  51. S. Fiedler, M. Lamers, J. Ingwersen, T. Streck, K. Stahr, and H. F. Jungkunst, “Impact of the heatwave in 2003 on the summer CH4 budget of a spruce forest with large variation in soil drainage: a four-year comparison (2001–2004),” J. Plant Nutr. Soil Sci. 171 (5), 666–671 (2008).

    Article  Google Scholar 

  52. E. I. Friedmann, “Endolithic microorganisms in the Antarctic cold desert,” Science 215, 1045–1053 (1982).

    Article  Google Scholar 

  53. Developments in Earth Surface Processes, Vol. 19: Principles and Dynamics of the Critical Zone, Ed. by J. R. Giardino and C. Houser (Elsevier, Amsterdam, 2015.

    Google Scholar 

  54. A. A. Gorbushina, “Life on the rocks,” Environ. Microbiol. 9, 1613–1631 (2007).

    Article  Google Scholar 

  55. S. V. Goryachkin, “Soil minorities—How should we classify them in WRB and other classification systems?” in International Conference and Field Workshop “Soil Classification 2004,” Abstracts of Papers (Petrozavodsk, 2004), pp. 22–23.

  56. K. Heister, C. Höschen, G. J. Pronk, C. W. Mueller, and I. Kögel-Knabner, “NanoSIMS as a tool for characterizing soil model compounds and organomineral associations in artificial soils,” J. Soils Sediments 12 (1), 35–47 (2012).

    Article  Google Scholar 

  57. J. Howard, Anthropogenic Soils (Springer-Verlag, New York, 2017).

    Book  Google Scholar 

  58. Their World: A Diversity of Microbial Environments, Advances in Environmental Microbiology Series, Ed. by C. J. Hurst (Springer-Verlag, New York, 2016).

    Google Scholar 

  59. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2014).

  60. S. E. Jorge-Villar and H. G. Edwards, “Microorganism response to stressed terrestrial environments: a Raman spectroscopic perspective of extremophilic life strategies,” Life 3, 276–294 (2013).

    Article  Google Scholar 

  61. M. Keiluweit, J. J. Bougoure, L. H. Zeglin, D. D. Myrold, P. K. Weber, J. Pett-Ridge, M. Kleber, and P. S. Nico, “Nano-scale investigation of the association of microbial nitrogen residues with iron (hydr)oxides in a forest soil O-horizon,” Geochim. Cosmochim. Acta 95, 213–226 (2012).

    Article  Google Scholar 

  62. I. Kovda, S. Goryachkin, M. Lebedeva, N. Chizhikova, A. Kulikov, and N. Badmaev, “Vertic soils and Vertisols in cryogenic environments of southern Siberia, Russia,” Geoderma 288, 184–195 (2017).

    Article  Google Scholar 

  63. A Handbook of Soil Terminology, Correlation and Classification, Ed. by P. Krasilnikov, J.-J. Ibaňez Marti, R. Arnold, and S. Shoba (Routledge, London, 2009).

    Google Scholar 

  64. J. Lehmann, D. Solomon, J. Kinyangi, L. Dathe, S. Wirick, and C. Jacobsen, “Spatial complexity of soil organic matter forms at nanometre scales,” Nat. Geosci. 1, 238–242 (2008).

    Article  Google Scholar 

  65. N. Mergelov, C. W. Mueller, I. Prater, I. Shorkunov, A. Dolgikh, E. Zazovskaya, V. Shishkov, V. Krupskaya, K. Abrosimov, A. Cherkinsky, and S. Goryachkin, “Alteration of rocks by endolithic organisms is one of the pathways for the beginning of soils on Earth,” Sci. Rep. 8, 1–15 (2018).

    Article  Google Scholar 

  66. C. W. Mueller, P. K. Weber, M. R. Kilburn, C. Hoeschen, M. Kleber, and J. Pett-Ridge, “Advances in the analysis of biogeochemical interfaces: NanoSIMS to investigate soil microenvironments,” Adv. Agron. 121, 1–46 (2013).

    Article  Google Scholar 

  67. C. M. Pieters and S. Noble, “Space weathering on airless bodies,” J. Geophys. Res.: Planets 121 (10), 1865–1884 (2016).

    Article  Google Scholar 

  68. S. J. Rodriguez and P. L. Bishop, “Three-dimensional quantification of soil biofilms using image analysis,” Environ. Eng. Sci. 24, 96–103 (2007).

    Article  Google Scholar 

  69. S. A. Schweizer, C. Hoeschen, S. Schlüter, I. Kögel-Knabner, and C. W. Mueller, “Rapid soil formation after glacial retreat shaped by spatial patterns of organic matter accrual in microaggregates,” Global Change Biol. 24 (4), 1637–1650 (2018).

    Article  Google Scholar 

  70. E. B. Skvortsova, E. V. Shein, K. N. Abrosimov, K. M. Gerke, D. V. Korost, K. A. Romanenko, V. S. Belokhin, and A. V. Dembovetskii, “Tomography in soil science,” Byul. Pochv. Inst. im. V.V. Dokuchaeva, No. 86, 28–34 (2016).

    Google Scholar 

  71. Soil Survey Staff, Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys, Agricultural Handbook no. 436 (US Department of Agriculture, Washington, 1999).

  72. A. N. Tkachenko, M. I. Gerasimova, M. Yu. Lychagin, N. S. Kasimov, and S. B. Kroonenberg, “Bottom sediments in deltaic shallow-water areas—are they soils?” Geogr., Environ., Sustainability 3, 39–52 (2016).

    Google Scholar 

  73. S. M. Turchinskaya and A. A. Semikolennykh, “The details of carbon isotope profiles formation in soil-like bodies under the communities of phototrophs in karst caves,” in International Scientific and Practical Conference “Practical Geography and 21st Century Challenges,” June 4–6, 2018, Moscow, Abstracts of Papers (Institute of Geography, Russian Academy of Sciences, Moscow, 2018), pp. 697–698.

  74. A. van Wambeke, “Criteria for classifying tropical soils by age,” J. Soil Sci. 13, 124–132 (1962).

    Article  Google Scholar 

  75. Proceedings of the 9th SUITMA Congress “Urbanization: Challenge and Opportunity for Soil Functions and Ecosystem Services,” Ed. by V. Vasenev, E. Dovletyarova, Z. Cheng, T. V. Prokof’eva, J. L. Morel, and N. D. Ananyeva (Springer-Verlag, New York, 2019).

    Google Scholar 

  76. A. Vidal, J. Hirte, F. Bender, J. Mayer, A. Gattinger, C. Höschen, S. Schädler, T. M. Iqbal, and C. W. Mueller, “Linking 3D soil structure and plant-microbe-soil carbon transfer in the rhizosphere,” Front. Environ. Sci. 6, 9 (2018).

    Article  Google Scholar 

  77. Biological Soil Crusts: An Organizing Principle in Drylands, Ed. by B. Weber, B. Büdel, and J. Belnap (Springer-Verlag, New York, 2016).

    Google Scholar 

  78. E. Zazovskaya, N. Mergelov, V. Shishkov, A. Dolgikh, V. Miamin, A. Cherkinsky, and S. Goryachkin, “Radiocarbon age of soils in oases of East Antarctica,” Radiocarbon 59 (2), 489–503 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Science Foundation, project no. 14-27-00133 (conceptual generalization of data); the Russian Foundation for Basic Research, project no. 16-04-01776 (methodological support); and by the joint project of the Russian Foundation for Basic Research and Russian Geographical Society, project no. 17-05-41157 (geographical aspects of the study).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Goryachkin.

Additional information

Translated by D. Konyushkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goryachkin, S.V., Mergelov, N.S. & Targulian, V.O. Extreme Pedology: Elements of Theory and Methodological Approaches. Eurasian Soil Sc. 52, 1–13 (2019). https://doi.org/10.1134/S1064229319010046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229319010046

Keywords:

Navigation