Log in

Rapidly quenched ferromagnetic ribbons with shape memory for magnetically controlled micromechanic devices

  • Nanoelectronics
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

One-way shape-memory effect (SME) controlled by temperature and magnetic field in rapidly melt-quenched (RMQ) Heusler-alloy (Ni53Mn24Ga23) ribbons is experimentally studied. Two-way SME that results from training is demonstrated for submicron Ni53Mn24Ga23 samples. Reversible thermally and magnetically controlled bending of no less than 1.5% and deflection of no less than 2 μm are reached for composite Ni53Mn24Ga23/Pt microactuators with sizes of 25 × 2.3 × 1.7 μm3 in the presence of magnetic field of μ0 Н = 8 T at an initial temperature of 63°С.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. D. Buchel’nikov, A. N. Vasil’ev, V. V. Koledov, et al., Physics-Uspekhi 49, 871 (2006).

    Article  Google Scholar 

  2. A. D. Bozhko, A. N. Vasil’ev, V. V. Khovailo, et al., JETP Lett. 67, 227 (1998).

    Article  Google Scholar 

  3. A. D. Bozhko, A. N. Vasil’ev, V. V. Khovailo, et al., J. Exp. Theor. Phys. 88, 954 (1999).

    Article  Google Scholar 

  4. I. Dikshtein, V. Koledov, V. Shavrov, et al., IEEE Trans. Magn. 35, 3811 (1999).

    Article  Google Scholar 

  5. A. Vasiliev, A. Bozhko, V. Khovailo, et al., Phys. Rev. B 59, 1113 (1999).

    Article  Google Scholar 

  6. V. Buchelnikov, I. Dikshtein, R. Grechishkin, et al., J. Magn. Magn. Mater. 272-276, 2025 (2004).

    Article  Google Scholar 

  7. V. V. Kokorin, V. V. Koledov, V. G. Shavrov, et al., J. Appl. Phys. 116, 103515 (2014).

    Article  Google Scholar 

  8. S. Pramanick, S. Chatterjee, S. Giri, et al., J. Alloys Comp. 578, 157 (2013).

    Article  Google Scholar 

  9. L. Gonzalez-Legarreta, T. Sanchez, W. O. Rosa, et al., J. Supercond. Novel Magn. 25, 2431 (2012).

    Article  Google Scholar 

  10. T. Sánchez, R. S. Turtelli, R. Grössinger, et al., J. Magn. Magn. Mater. 324, 3535 (2012).

    Article  Google Scholar 

  11. L. González, J. García, M. Nazmunnahar, et al., Solid State Phenom. 190, 307 (2012).

    Article  Google Scholar 

  12. D. C. Dunand and P. Müllner., Adv. Mater. 23, 216 (2011).

    Article  Google Scholar 

  13. K. Akatyeva, V. Afonina, F. Albertini, et al., Solid State Phenom. 190, 295 (2012).

    Article  Google Scholar 

  14. A. V. Irzhak, V. S. Kalashnikov, V. V. Koledov, D. S.Kuchin, G. A. Lebedev, P. V. Lega, N. A. Pikhtin, I. S. Tarasov, V. G. Shavrov, and A. V. Shelyakov., Tech. Phys. Lett. 36, 329 (2010).

    Article  Google Scholar 

  15. N. I. Kourov, A. V. Korolev, V. G. Pushin, V. V. Koledov, V. G. Shavrov, and V. V. Khovailo., Phys. Met. Metallogr. 99, 376 (2005).

    Google Scholar 

  16. V. G. Pushin, N. I. Kourov, A. V. Korolev, V.A.Kazantsev, L. I. Yurchenko, V. V. Koledov, V. G. Shavrov, and V. V. Khovailo., Phys. Met. Metallogr. 99, 401 (2005).

    Google Scholar 

  17. R. M. Grechishkin, V. V. Koledov, V. G. Shavrov, et al., Int. J. Appl. Electromagn. Mech. 19, 175 (2004).

    Google Scholar 

  18. O. M. Korpusov, R. M. Grechishkin, V. V. Koledov, et al., J. Magn. Magn. Mater. 272-276, 2035 (2004).

    Article  Google Scholar 

  19. A. A. Cherechukin, I. E. Dikshtein, D. I. Ermakov, et al., Phys. Lett. A 291, 175 (2001).

    Article  Google Scholar 

  20. V. A. Chernenko, V. V. Kokorin, and I. N. Vitenko., Smart Mater. Structures 3, 80 (1994).

    Article  Google Scholar 

  21. D. Zakharov, G. Lebedev, V. Koledov, et al., Phys. Procedia 10, 58 (2010).

    Article  Google Scholar 

  22. A. V. Irzhak, D. I. Zakharov, V. S. Kalashnikov, V.V.Koledov, D. S. Kuchin, G. A. Lebedev, P. V. Lega, E. P. Perov, N. A. Pikhtin, V. G. Pushin, I. S. Tarasov, V. V. Khovailo, V. G. Shavrov, and A. V. Shelyakov, J. Commun. Technol. Electron. 55, 818 (2010).

    Article  Google Scholar 

  23. E. Kalimullina, A. Kamantsev, V. Koledov, et al., Phys. Status Solidi C 11, 1023 (2014).

    Article  Google Scholar 

  24. A. Irzhak, V. Koledov, D. Zakharov, et al., J. Alloys Comp. 586, S464 (2014).

    Article  Google Scholar 

  25. M. Kohl, M. Schmitt, A. Backen, et al., Appl. Phys. Lett. 104, 043111 (2014).

    Article  Google Scholar 

  26. V. Bessalova, N. Perov, and V. Rodionova, J. Magn. Magn. Mater. 415, 66 (2016).

    Article  Google Scholar 

  27. F. S. Liu, Q. B. Wang, S. P. Li, et al., Physica B 412, 74 (2013).

    Article  Google Scholar 

  28. Z. Liu, S. Yu, H. Yang, et al., Intermetallics 16, 447 (2008).

    Article  Google Scholar 

  29. H. Feng-**a, S. Bao-Gen, and S. Ji-Rong., Chin. Phys. B 22, 037505 (2013).

    Article  Google Scholar 

  30. J. L. Sánchez Llamazares, T. Sánchez, J. D. Santos, et al., Appl. Phys. Lett. 92, 012513 (2008).

    Article  Google Scholar 

  31. W. O. Rosa, L. González, J. García, et al., Phys. Res. Int. 2012, 794171 (2012).

    Article  Google Scholar 

  32. D. A. Filippov, V. V. Khovailo, V. V. Koledov, et al., J. Magn. Magn. Mater. (Special Issue) 258, 507 (2003).

    Article  Google Scholar 

  33. V. N. Prudnikov, A. P. Kazakov, I. S. Titov., Ya. N. Kovarskii, N. S. Perov, A. B. Granovsky, I. Dubenko, A. K. Pathak, N. Ali, and J. Gonzalez, Phys. Solid State 53, 490 (2011).

    Article  Google Scholar 

  34. L. González-Legarreta, W. O. Rosa, J. García, et al., J. Alloys Comp. 582, 490 (2014).

    Article  Google Scholar 

  35. T. Sánchez, J. L. Sánchez Llamazares, B. Hernando, et al., Mater. Sci. Forum 635, 81 (2010).

    Article  Google Scholar 

  36. F. Chen, M. Zhang, Y. Chai, et al., Phys. Status Solidi A 209, 1557 (2012).

    Article  Google Scholar 

  37. R. Sahoo, D. M. Raj Kumar, D. Babu Arvindha, et al., J. Magn. Magn. Mater. 347, 95 (2013).

    Article  Google Scholar 

  38. J. Liu, N. Scheerbaum, J. Lyubina, et al., Appl. Phys. Lett. 93, 102512 (2008).

    Article  Google Scholar 

  39. J. Liu, N. Scheerbaum, S. Weiß et al., Appl. Phys. Lett. 95, 152503 (2009).

    Article  Google Scholar 

  40. J. Liu, N. Scheerbaum, D. Hinz, et al., Appl. Phys. Lett. 92, 162509 (2008).

    Article  Google Scholar 

  41. F. Albertini, S. Besseghini, A. S. Bugaev, R. M. Grechishkin, V. V. Koledov, L. Pareti, M. Pasquale, V. G. Shavrov, and D. S. Yulenkov, J. Commun. Technol. Electron. 50, 638 (2005).

    Google Scholar 

  42. N. M. Matveeva, Yu. K. Kovneristyi, L. A. Matlakhova, et al., Izv. AN SSSR, Ser. Metally, No. 4, 97 (1987).

    Google Scholar 

  43. F. Albertini, S. Besseghini, A. Paoluzi, et al., J. Magn. Magn. Mater. 242, 1421 (2002).

    Article  Google Scholar 

  44. P. A. Algarabel, C. Magen, L. Morellon, et al., J. Magn. Magn. Mater. 272–276, 2047 (2004).

    Article  Google Scholar 

  45. N. Yao and Ch. L. Van, The Reference Book on Microscopy for Nanotechnology (Nauch. Mir, Moscow, 2011) [in Russian].

    Google Scholar 

  46. A. Irzhak, V. Koledov, D. Zakharov, et al., J. Alloys Comp. 586, S464 (2014).

    Article  Google Scholar 

  47. D. Zakharov, G. Lebedev, A. Irzhak, et al., Smart Mater. Struct. 21, 052001 (2012).

    Article  Google Scholar 

  48. V. I. Nizhankovskii and V. I. Tsebro., Usp. Fiz. Nauk. 183 (32), 219 (2013).

    Article  Google Scholar 

  49. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov., Progress Mater. Sci. 45, 103 (2000).

    Article  Google Scholar 

  50. E. Pagounis, A. Laptev, J. Jungwirth, et al., Scr. Mater. 88, 17 (2014).

    Article  Google Scholar 

  51. S. Glock, L. P. Canal, C. M. Grize, et al., Composites Sci. Technol. 114, 110 (2015).

    Article  Google Scholar 

  52. Y. Liu, X. Zhang, D. **ng, et al., Physica Status Solidi A 212, 855 (2015).

    Article  Google Scholar 

  53. A. V. Shelyakov, N. N. Sitnikov, V. V. Koledov, et al., Int. J. Smart and Nano Mater. 2 (2), 68 (2011).

    Article  Google Scholar 

  54. B. T. Lester, T. Baxevanis, Y. Chemisky, et al., Acta Mechanica 226, 3907 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. T. Dilmieva.

Additional information

Original Russian Text © E.T. Dilmieva, A.V. Irzhak, A.P. Kamantsev, V.V. Koledov, V.G. Shavrov, R.M. Grechishkin, E.P. Krasnoperov, V.A. Dikan, F. Albertini, S. Fabbrici, L. González-Legarreta, B. Hernando, 2017, published in Radiotekhnika i Elektronika, 2017, Vol. 62, No. 7, pp. 703–713.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilmieva, E.T., Irzhak, A.V., Kamantsev, A.P. et al. Rapidly quenched ferromagnetic ribbons with shape memory for magnetically controlled micromechanic devices. J. Commun. Technol. Electron. 62, 809–819 (2017). https://doi.org/10.1134/S106422691707004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422691707004X

Navigation