Log in

The Design of an Electrically-Driven Single Photon Source of the 1.3-μm Spectral Range Based on a Vertical Microcavity with Intracavity Contacts

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Using mathematical simulation methods, various versions of the design of electrically-driven single photon sources based on optical microcavities with single quantum dots are investigated. A version of the design of a source of single photons of the 1.3-μm spectral range with intracavity contacts and several oxide-confined apertures layers is proposed, which provides an almost twofold increase in the efficiency of photon coupling to a standard single-mode optical fiber in comparison with a widely used design based on a circular micropillar cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. R. Michalzik, VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Springer, Berlin, 2013). https://doi.org/10.1007/978-3-642-24986-0

    Book  Google Scholar 

  2. H. Mäntynen, N. Anttu, Z. Sun, and H. Lipsanen, Nanophotonics 8, 747 (2019). https://doi.org/10.1515/nanoph-2019-0007

    Article  Google Scholar 

  3. M. I. Davanco, M. T. Rakher, D. Schuh, A. Badolato, and K. Srinivasan, Appl. Phys. Lett. 99, 041102 (2011). https://doi.org/10.1063/1.3615051

    Article  ADS  Google Scholar 

  4. S. Reitzenstein and A. Forchel, J. Phys. D: Appl. Phys. 43, 033001 (2010). https://doi.org/10.1088/0022-3727/43/3/033001

    Article  ADS  Google Scholar 

  5. S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, Opt. Express 24, 8539 (2016). https://doi.org/10.1364/OE.24.008539

    Article  ADS  Google Scholar 

  6. A. Schlehahn, A. Thoma, P. Munnelly, M. Kamp, S. Höfling, T. Heindel, C. Schneider, and S. Reitzenstein, APL Photon. 1, 011301 (2016). https://doi.org/10.1063/1.4939831

  7. Z.-S. Chen, B. Ma, X.-J. Shang, H.-Q. Ni, J.-L. Wang, and Z.-C. Niu, Nanoscale Res. Lett. 12, 378 (2017). https://doi.org/10.1186/s11671-017-2153-2

    Article  ADS  Google Scholar 

  8. N. Srocka, A. Musiał, P.-I. Schneider, P. Mrowiński, P. Holewa, S. Burger, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sek, AIP Adv. 8, 085205 (2018). https://doi.org/10.1063/1.5038137

    Article  ADS  Google Scholar 

  9. J.-H. Kim, T. Cai, C. J. K. Richardson, R. P. Leavitt, and E. Waks, Optica 3, 577 (2016). https://doi.org/10.1364/OPTICA.3.000577

    Article  ADS  Google Scholar 

  10. L. Rickert, T. Kupko, S. Rodt, S. Reitzenstein, and T. Heindel, Opt. Express 27, 36824 (2019). https://doi.org/10.1364/OE.27.036824

    Article  ADS  Google Scholar 

  11. Y.-L. D. Ho, T. Cao, P. S. Ivanov, M. J. Cryan, I. J. Craddock, C. J. Railton, and J. G. Rarity, IEEE J. Quant. Electron. 43, 462 (2007). https://doi.org/10.1109/JQE.2007.897905

    Article  ADS  Google Scholar 

  12. C. Asplund, S. Mogg, G. Plaine, F. Salomonsson, and N. Chitica, J. Appl. Phys. 90, 794 (2001). https://doi.org/10.1063/1.1376407

    Article  ADS  Google Scholar 

  13. N. A. Maleev, A. R. Kovsh, A. E. Zhukov, A. P. Vasil’ev, S. S. Mikhrin, A. G. Kuz’menkov, D. A. Bedarev, Yu. M. Zadiranov, M. M. Kulagina, Yu. M. Shernyakov, A. S. Shulenkov, V. A. Bykovskii, Yu. M. Solov’ev, C. Möller, N. N. Ledentsov, and V. M. Ustinov, Semiconductors 37, 1234 (2003). https://doi.org/10.1134/1.1619524

    Article  ADS  Google Scholar 

  14. N. A. Maleev, A. G. Kuz’menkov, M. M. Kulagina, Yu. M. Zadiranov, A. P. Vasil’ev, S. A. Blokhin, A. S. Shulenkov, S. I. Troshkov, A. G. Gladyshev, A. M. Nadtochii, M. M. Pavlov, M. A. Bobrov, D. E. Nazaruk, and V. M. Ustinov, Semiconductors 47, 993 (2013). https://doi.org/10.1134/S1063782613070166

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (RFBR) in cooperation with the German Research Community (DFG) within RFBR project no. 20-52-12006 and DFG project no. Re2974/24-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Blokhin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blokhin, S.A., Bobrov, M.A., Maleev, N.A. et al. The Design of an Electrically-Driven Single Photon Source of the 1.3-μm Spectral Range Based on a Vertical Microcavity with Intracavity Contacts. Tech. Phys. Lett. 47, 222–226 (2021). https://doi.org/10.1134/S1063785021030056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785021030056

Keywords:

Navigation