Log in

Simulation of Ion Irradiation of Crystalline and Amorphous Targets Tokamak-Reactor First Wall Materials

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

An overview of results concerning simulation of various processes which occur due to atomic bombardment of crystalline and amorphous solids is presented. With the use of original computational codes, the following data were obtained: reflection coefficients, projected energy losses and ranges of ions in solids, channeling data as well as sputtering yield and its dependence on incident angle of bombarding particles for Be–W and Ne–W combinations. Be, C, and W targets were studied as these are among the plasma-facing materials in tokamaks, including ITER. The emphasis was made on atom-target combinations which lack reliable experimental data. Experimental data on other materials were used to verify calculations. A significant influence of the interaction potential used on the simulation results is shown. The reviewed results are tied by a common subject a study of interaction of plasma ions and first-wall materials of a tokamak-reactor and also by a common method of study the use of an original computational code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. V. Borovikov, A. F. Voter, X.-Z. Tang. J. Nucl. Mater., 447 (1), 254 (2014). https://doi.org/10.1016/j.jnucmat.2014.01.021

    Article  ADS  CAS  Google Scholar 

  2. P. N. Maya. J. Nucl. Mater., 480, 411 (2016). https://doi.org/10.1016/j.jnucmat.2016.08.007

  3. V. V. Bandurko, N. N. Koborov, V. A. Kurnaev, V. M. Sotnikov, O. V. Zabeyda. J. Nucl. Mater., 176–177, 630 (1990). https://doi.org/10.1016/0022-3115(90)90118-7

    Article  ADS  Google Scholar 

  4. C. K. Chen, B. M. U. Scherzer, W. Eckstein, Appl. Phys. A, 33, 265 (1984).

    Article  ADS  Google Scholar 

  5. P. Yu. Babenko, M. I. Mironov, V. S. Mikhailov, A. N. Zinoviev. Plasma Phys. Control. Fusion, 62, 045020 (2020). https://doi.org/10.1088/1361-6587/ab7943

  6. S. Makarov, E. Kaveeva. MATEC Web Conf. EECE-2018, 245, 13002 (2018). https://doi.org/10.1051/matecconf/201824513002

  7. F. Ko chl, A. Loarte, E. de la Luna, V. Parail, G. Corrigan, D. Harting, I. Nunes, C. Reux, F. G. Rimini, A. Polevoi, M. Romanelli and JET Contributors. Plasma Phys. Control. Fusion, 60, 074008 (2018). https://doi.org/10.1088/1361-6587/aabf52

  8. T. Abrams, E. A. Unterberg, D. L. Rudakov, A. W. Leonard, O. Schmitz, D. Shiraki, L. R. Baylor, P. C. Stangeby, D. M. Thomas, H. Q. Wang. Phys. Plasmas, 26, 062504 (2019). https://doi.org/10.1063/1.5089895

  9. A. N. Zinoviev, K. Nordlund. Nucl. Instrum. Methods Phys. Res. B, 406, 511 (2017). https://doi.org/10.1016/j.nimb.2017.03.047

    Article  ADS  CAS  Google Scholar 

  10. J. F. Ziegler, J. P. Biersack, U. Littmark. The Stop** and Range of Ions in Solids, (Pergamon, NY., 1985).

    Google Scholar 

  11. D. S. Meluzova, P. Yu. Babenko, A. P. Shergin, K. Nordlund, A. N. Zinoviev. Nucl. Instrum. Methods Phys. Res. B, 460, 4 (2019). https://doi.org/10.1016/j.nimb.2019.03.037

    Article  ADS  CAS  Google Scholar 

  12. H. Paul. IAEA NDS. https://www-nds.iaea.org/stop**

  13. A. Lasa, C. Bjorkas, K. Vortler, K. Nordlund. J. Nucl. Mater., 429, 284 (2012). https://doi.org/10.1016/j.jnucmat.2012.06.012

    Article  ADS  CAS  Google Scholar 

  14. D. K. Kogut, N. N. Trifonov, V. A. Kurnaev. Bulletin of the Russian Academy of Sciences: Physics, 72 (7), 969 (2008).

    Article  ADS  Google Scholar 

  15. D. S. Meluzova, P. Yu. Babenko, A. P. Shergin, A. N. Zinoviev. J. Surf. Invest., 14, 738 (2020). https://doi.org/10.1134/S102745102004014X

    Article  CAS  Google Scholar 

  16. D. S. Meluzova, P. Yu. Babenko, A. P. Shergin, A. N. Zinoviev. Tech. Phys., 65 (1), 145 (2020). https://doi.org/10.1134/S106378422001017X

    Article  CAS  Google Scholar 

  17. E. Ligeon, A. Guivarc’h. Rad. Eff., 27 (3–4), 129 (1976). https://doi.org/10.1080/00337577608243025

    Article  ADS  CAS  Google Scholar 

  18. M. Weiser, M. Behar, S. Kalbitzer, P. Oberschachtsiek, D. Fink, G. Frech. Nucl. Instrum. Methods Phys. Res. B, 29, 487 (1987). https://doi.org/10.1016/0168-583X(87)90073-5

    Article  Google Scholar 

  19. D. S. Meluzova, P. Yu. Babenko, M. I. Mironov, V. S. Mikhailov, A. P. Shergin, A. N. Zinoviev. Tech. Phys. Lett., 45 (6), 580 (2019). https://doi.org/10.1134/S1063785019060130

    Article  ADS  CAS  Google Scholar 

  20. D. S. Meluzova, P. Yu. Babenko, M. I. Mironov, V. S. Mikhailov, A. P. Shergin, A. N. Zinoviev. AIP Conf. Proc., 2179, 020018 (2019). https://doi.org/10.1063/1.5135491

  21. D. S. Meluzova, P. Yu. Babenko, A. P. Shergin, A. N. Zinoviev. Pis’ma v ZhTF (in Russian), 46 (5), 34 (2020). [D. S. Meluzova, P. Yu. Babenko, A. P. Shergin, A. N. Zinoviev. Tech. Phys. Lett., 46 (3), 235 (2020). https://doi.org/10.1134/S1063785020030104] https://doi.org/10.21883/PJTF.2020.05.49106.18034

  22. S. I. Matyukhin. Tech. Phys., 53 (12), 1578 (2008). https://doi.org/10.1134/S1063784208120074

    Article  CAS  Google Scholar 

  23. L. C. Feldman, J. W. Mayer, S. T. Picraux. Materials Analysis by Ion Channeling (Academic Press, San Diego, 1982).

    Google Scholar 

  24. M.-C. Marinica, L. Ventelon, M. R. Gilbert, L. Proville, S. L. Dudarev, J. Marian, G. Bencteux, F. Willaime. J. Phys.: Condens. Matter., 25, 395502 (2013). https://doi.org/10.1088/0953-8984/25/39/395502

  25. R. Behrisch, W. Eckstein. Sputtering by Particle Bombardment (Springer, Berlin, 2007).

    Google Scholar 

  26. J. F. Ziegler, J. P. Biersack. SRIM. http://www.srim.org.

  27. X. Yang, A. Hassanein. Appl. Surf. Sci., 293, 187 (2014). https://doi.org/10.1016/j.apsusc.2013.12.129

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Meluzova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meluzova, D.S., Babenko, P.Y., Zinoviev, A.N. et al. Simulation of Ion Irradiation of Crystalline and Amorphous Targets Tokamak-Reactor First Wall Materials. Tech. Phys. 68, 668–674 (2023). https://doi.org/10.1134/S1063784223080200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223080200

Keywords:

Navigation