Log in

Comparison of Polarization Fading Compensation Methods for Broadband Microwave Photonic Links by Introduced Noise and Achievable Dynamic Range

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Two methods for compensation of polarization fading in microwave photonic links have been studied. Comparison of noise characteristics has been performed and factors limiting the dynamic range of microwave photonic link have been analyzed on an example of a link with an external remote electrooptic modulator. The possibility of reaching spurious-free dynamic range close to the shot-noise limit SFDR3 ≈ 116 dB Hz–2/3 has been demonstrated for 1000 m microwave photonic link.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. G. Rajan. Optical Fiber Sensors: Advanced Techniques and Applications (CRC press, Boca Raton, 2015).

    Google Scholar 

  2. W. S. C. Chang. RF Photonics Technology in Optical Fiber Links (Cambridge University Press, Cambridge, 2002).

    Book  Google Scholar 

  3. V. J. Urick, D. J. McKinney, K. J. Williams. Fundamentals of microwave photonics (John Willey & Sons, Hoboken, New Jersey, 2015).

    Book  Google Scholar 

  4. V. M. Petrov, A. V. Shamray. Interferentsiya i diffraktsiya dlya interferentsionnoy fotoniki (Lan, SPb., 2019) (in Russian).

  5. M. Ni, H. Yang, S. **ong, Y. Hu. Appl. Opt., 45 (11), 2387 (2006). https://doi.org/10.1364/AO.45.002387

    Article  ADS  Google Scholar 

  6. M. E. Froggatt, D. K. Gifford, S. Kreger, M. Wolfe, B. J. Soller. J. Lightwave Technol., 24 (11), 4149 (2006). https://doi.org/10.1109/JLT.2006.883607

    Article  ADS  Google Scholar 

  7. R. Waterhouse, D. Novak. IEEE Microwav. Mag., 16 (8), 84 (2015). https://doi.org/10.1109/MMM.2015.2441593

    Article  Google Scholar 

  8. N. G. Walker, G. R. Walker. J. Lightwave Technol., 8 (3), 438 (1990). https://doi.org/10.1109/50.50740

    Article  ADS  CAS  Google Scholar 

  9. K. Kitayama, A. Maruta, Y. Yoshida. J. Lightwave Technol., 32 (20), 3411 (2014). https://doi.org/10.1109/JLT.2014.2310461

    Article  ADS  Google Scholar 

  10. A. D. Kersey, M. J. Marrone, A. Dandridge. J. Lightwave Technol., 8 (6), 838 (1990). https://doi.org/10.1109/50.54500

    Article  ADS  CAS  Google Scholar 

  11. A. Petrov, E. Velichko, V. Lebedev, I. Ilichev, P. Agruzov, M. Parfenov, A. Varlamov, A. Shamrai. In: O. Galinina, S. Andreev, S. Balandin, Y. Koucheryavy (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN 2019, ruSMART 2019. Lecture Notes in Computer Science (Springer, Cham, 2019), v. 11660, p. 727. https://doi.org/10.1007/978-3-030-30859-9_64

    Book  Google Scholar 

  12. A. Petrov, A. Tronev, P. Agruzov, A. Shamrai, V. Sorotsky. Electronics, 9 (11), 1861 (2020). https://doi.org/10.3390/electronics9111861

    Article  Google Scholar 

  13. I. V. Il’ichev, N. V. Toguzov, A. V. Shamray. Tech. Phys. Lett., 35 (9), 831 (2009). https://doi.org/10.1134/S1063785009090132

    Article  ADS  CAS  Google Scholar 

  14. W. K. Burns, R. P. Moeller, C. H. Bulmer, A. S. Greenblatt. Opt. Lett., 16 (6), 381 (1991). https://doi.org/10.1364/OL.16.000381

    Article  ADS  CAS  PubMed  Google Scholar 

  15. T. Okoshi. J. Lightwave Technol., 3 (6), 1232 (1985). https://doi.org/10.1109/JLT.1985.1074336

    Article  ADS  Google Scholar 

  16. S. Belchikov. Komponenty i tekhnologii, 4, 196 (2008) (in Russian).

  17. M. S. Islam, T. Chau, S. Mathai, T. Itoh, M. C. Wu, D. L. Sivco, A. Y. Cho. IEEE Trans. Microwave Theory Tech., 47 (7), 1282 (1999). https://doi.org/10.1109/22.775467

    Article  ADS  Google Scholar 

  18. W. H. J. Aarts, G. D. Khoe. J. Lightwave Technol., 7 (7), 10333 (1989). https://doi.org/10.1109/50.29630

    Article  Google Scholar 

  19. M. Martinelli, R. A. Chipman. J. Lightwave Technol., 21 (9), 2089 (2003). https://doi.org/10.1109/JLT.2003.816835

    Article  ADS  Google Scholar 

  20. M. Martinelli, P. Martelli, S. M. Pietralunga. J. Lightwave Technol., 24 (11), 4172 (2006). https://doi.org/10.1109/JLT.2006.884228

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

At Peter the Great St. Petersburg Polytechnic University, the study was supported as part of the State Assignment for Conducting Fundamental Research (topic code FSEG-2020-0024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Lebedev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, V.V., Petrov, A.N., Parfenov, M.V. et al. Comparison of Polarization Fading Compensation Methods for Broadband Microwave Photonic Links by Introduced Noise and Achievable Dynamic Range. Tech. Phys. 68, 643–647 (2023). https://doi.org/10.1134/S1063784223080157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223080157

Keywords:

Navigation