Log in

Approximate Methods for Solving Degenerate Singular Integral Equations

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Singular integral equations in degenerate cases describe many processes in natural science and technology. The theory of these equations has been studied quite well, but as far as the authors know, there are currently no analytical methods for solving them. In this regard, there is a need to construct approximate methods for solving singular integral equations in degenerate cases. The article is devoted to the construction of such methods, which determines its relevance. When constructing approximate methods, iteration–projection methods are used. A spline–collocation method for solving a degenerate singular characteristic equation is constructed. A two-stage approximate method is proposed for solving complete singular integral equations in degenerate cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. D. Gakhov, Boundary Value Problems (Addison-Wesley, Reading, Mass., 1966).

    Book  MATH  Google Scholar 

  2. N. I. Muskhelishvili, Singular Integral Equations (Nauka, Moscow, 1966) [in Russian].

    MATH  Google Scholar 

  3. V. V. Ivanov, Theory of Approximate Methods and Its Application to the Numerical Solution of Singular Integral Equations (Naukova Dumka, Kiev, 1968) [in Russian].

    Google Scholar 

  4. I. Ts. Gokhberg and I. A. Fel’dman, Convolution Equations and Projection Methods of Their Solution (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  5. S. M. Belotserkovskii and I. K. Lifanov, Numerical Methods in Singular Integral Equations (Nauka, Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  6. I. K. Lifanov, Singular Integral Equations and Discrete Vortices (VSP, Utrecht, Netherlands, 1996).

    Book  MATH  Google Scholar 

  7. S. G. Mikhlin and S. Prössdorf, Singulare Integral Operatoren (Akademie, Berlin, 1980).

    Google Scholar 

  8. S. Prössdorf and B. Silbermann, Numerical Analysis for Integral and Related Operator Equations (Akademie, Berlin, 1991).

    MATH  Google Scholar 

  9. I. V. Boikov, Approximate Solution of Singular Integral Equations (Penza State Univ., Penza, 2004) [in Russian].

    MATH  Google Scholar 

  10. L. A. Chikin, Uch. Zap. Kazan. Gos. Univ. 113 (10), 57 (1953).

    Google Scholar 

  11. M. M. Lavrent’ev, Usp. Mat. Nauk 34 (4), 143 (1979).

    Google Scholar 

  12. M. M. Lavrent’ev, Sib. Mat. Zh. 21 (3), 225 (1980).

    Google Scholar 

  13. I. V. Boikov, “On one exceptional case of singular equations,” in Application of Computational Methods in Scientific and Technical Research (Penza Polytech. Inst., Penza, 1984), Iss. 6, pp. 3–11 [in Russian].

  14. I. V. Boikov and N. Yu. Kudryashova, Differ. Equations 36 (9), 1360 (2000). https://doi.org/10.1007/BF02754309

    Article  MathSciNet  Google Scholar 

  15. F. D. Gakhov and Yu. I. Cherskii, Convolutional Equations (Nauka, Moscow, 1978) [in Russian].

    MATH  Google Scholar 

  16. I. V. Boikov, Differ. Equations 48 (9), 1288 (2012). https://doi.org/10.1134/S001226611209008X

    Article  MathSciNet  Google Scholar 

  17. I. V. Boikov and A. A. Pivkina, Izv. Vyssh. Uchebn. Zaved., Povolzhsk. Reg. Fiz.-Mat. Nauki, No. 4, 71 (2021). https://doi.org/10.21685/2072-3040-2021-4-6

  18. S. M. Lozinskii, Zh. Vychisl. Mat. Mat. Fiz. 13 (2), 457 (1973).

    MathSciNet  Google Scholar 

  19. Yu. L. Daletskii and M. G. Krein, Stability of Solutions of Differential Equations in Banach Space (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  20. K. Dekker and J. G. Verwer, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations (North-Holland, Amsterdam, 1984).

    MATH  Google Scholar 

  21. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (Binom. Lab. Znanii, Moscow, 2008) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Boykov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boykov, I.V., Pivkina, A.A. Approximate Methods for Solving Degenerate Singular Integral Equations. Tech. Phys. 68, 67–73 (2023). https://doi.org/10.1134/S1063784223020020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784223020020

Keywords:

Navigation