Log in

The Role of Graphene Admixtures in the Stability of Aluminum Oxide to Brittle Fracture under Pulsed Electrophysical Actions

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We report the results of testing the dynamic strength of Al2O3 nanoceramics with different concentrations of five-layer graphene under the action of a high-current nanosecond electron beam and a high-voltage electric discharge of the same nanosecond duration. It is found that, under pulsed loading, an increase in the graphene content in the composite increases the brittleness of the nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Yu. A. Kotov and V. V. Ivanov, Vestn. Ross. Akad. Nauk 78 (9), 777 (2008).

    Google Scholar 

  2. A. V. Nomoev, Tech. Phys. Lett. 36, 994 (2010). https://doi.org/10.1134/S1063785010110076

    Article  ADS  Google Scholar 

  3. A. M. Bragov, V. N. Chuvil’deev, N. V. Melekhin, M. S. Boldin, V. V. Balandin, A. V. Nokhrin, and A. A. Popov, J. Appl. Mech. Tech. Phys. 61, 494 (2020). https://doi.org/10.1134/S0021894420030220

    Article  ADS  Google Scholar 

  4. S. V. Matrenin and B. B. Ovechkin, Nanostructured Materials in Machine Engineering (Tomsk. Politekh. Univ., Tomsk, 2009) [in Russian].

    Google Scholar 

  5. K. S. Novoselov and A. K. Geim, Nature 438, 197 (2005). https://doi.org/10.1038/nature04233

    Article  ADS  Google Scholar 

  6. H. **a, X. Zhang, Z. Shi, H. Zhang, and C. Zhao, Mater. Sci. Eng., A 639, 29 (2015). https://doi.org/10.1016/j.msea.2015.04.091

    Article  Google Scholar 

  7. H. J. Kim, S. M. Lee, Y. S. Oh, Y. H. Yang, Y. S. Lim, D. H. Yoon, C. Lee, J. Y. Kim, and R. S. Ruoff, Sci. Rep. 4, 5176 (2014). https://doi.org/10.1038/srep05176

    Article  Google Scholar 

  8. A. Centeno, V. G. Rocha, B. Alonso, A. Fernández, C. F. Gutierrez-Gonzalez, R. Torrecillas, and A. Zurutuza, J. Eur. Ceram. Soc. 33 (15–16), 3201 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.07.007

    Article  Google Scholar 

  9. A. Borrell, R. Torrecillas, V. G. Rocha, and A. Fernández, Wear 274, 94 (2012). https://doi.org/10.1016/j.wear.2011.08.013

    Article  Google Scholar 

  10. S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature 442, 282 (2006). https://doi.org/10.1038/nature04969

    Article  ADS  Google Scholar 

  11. Y. B. Adebayo and G. I. Douglas, J. Mater. Sci. 36 (20), 4995 (2001). https://doi.org/10.1023/A:1011885631876

    Article  Google Scholar 

  12. R. Azarafza, A. Arab, and A. Mehidpoor, Int. J. Adv. Des. Manuf. Technol. 5 (5), 83 (2012).

    Google Scholar 

  13. A. G. Zholnin, I. V. Kovaleva, M. S. Yurlova, A. M. Il’ina, E. G. Grigor’ev, and E. A. Olevskii, Fiz. Khim. Obrab. Mater. 2, 73 (2015).

    Google Scholar 

  14. E. A. Klyatskina, A. Borrell, E. G. Grigoriev, A. G. Zholnin, M. D. Salvador, and V. V. Stolyarov, J. Ceram. Sci. Technol. 9 (39), 215 (2018). https://doi.org/10.4416/JCST2018-00006

    Article  Google Scholar 

  15. Yu. I. Meshcheryakov and V. A. Morozov, Zh. Tekh. Fiz. 49 (9), 1982 (1979).

    Google Scholar 

  16. G. A. Mesyats, Ectons in Vacuum Discharges: Breakdown, Spark, and Arc (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  17. G. G. Savenkov, V. A. Morozov, M. A. Ilyushin, and V. M. Kats, Tech. Phys. Lett. 44 (12), 522 (2018). https://doi.org/10.1134/S1063785018060275

    Article  ADS  Google Scholar 

  18. V. A. Morozov, G. G. Savenkov, V. A. Bragin, V. M. Kats, and A. A. Lukin, Tech. Phys. 57 (5), 706 (2012). https://doi.org/10.1134/S1063784212050210

    Article  Google Scholar 

  19. V. N. Belomestnykh and E. P. Tesleva, Izv. Tomsk. Politekh. Univ. 306 (5), 8 (2003).

    Google Scholar 

  20. D. S. Sanditov and V. N. Belomestnykh, Tech. Phys. 56 (11), 1619 (2011). https://doi.org/10.1134/S106378421111020X

    Article  Google Scholar 

  21. A. F. Fedotov, Izv. Vyssh. Uchebn. Zaved. Porosh. Metal. Funk. Pokr., No. 1, 32 (2015). https://doi.org/10.17073/1997-308X-2015-1-32-37

  22. A. F. Usov, Vestn. Kol’sk. Nauchn. Tsentr. Ross. Akad. Nauk, No. 4 (11), 166 (2012).

    Google Scholar 

  23. A. A. Vorob’ev, G. A. Vorob’ev, and A. T. Chepikov, Certificate for Opening No. A-122 of 29.04.1998 (Priority 14.12.1961).

  24. G. G. Zegrya, G. G. Savenkov, V. A. Morozov, A. G. Zegrya, N. V. Ulin, V. P. Ulin, A. A. Lukin, V. A. Bragin, I. A. Oskin, and Yu. M. Mikhailov, Semiconductors 51 (4), 477 (2017). https://doi.org/10.1134/S106478261704025X

    Article  ADS  Google Scholar 

  25. V. V. Lopatin, M. D. Noskov, G. Z. Usmanov, and A. A. Cheglokov, Fiz. Mezomekh. 13 (6), 89 (2010).

    Google Scholar 

  26. A. A. Lukin, V. A. Morozov, and Yu. V. Sud’enkov, Vestn. St. Petersburg Univ., Math., No. 2, 133 (2008).

  27. D. I. Vaisburd and I. N. Balychev, Pisma Zh. Eksp. Teor. Fiz. 15 (9), 527 (1979).

    Google Scholar 

  28. D. E. Grady, and M. M. Hightower, Shock-Wave and High-Strain-Rate Phenomena in Materials (Marcel Dekker, New York, 1992), p. 713.

    Google Scholar 

  29. L. A. Glenn and A. Chudnovsky, J. Appl. Phys. 59 (4), 1379 (1986).

    Article  ADS  Google Scholar 

  30. A. G. Ivanov, V. A. Raevskii, and O. S. Vorontsova, Fiz. Goren. Vzryv. 31 (2), 96 (1995).

    Google Scholar 

  31. M. Michálek, M. Michálková, G. Blugan, and J. Kuebler, Ceram. Int. 44 (3), 3255 (2017). https://doi.org/10.1016/j.ceramint.2017.11.098

    Article  Google Scholar 

  32. G. G. Savenkov, V. A. Morozov, and A. A. Lukin, Tech. Phys. Lett. 42 (11), 1110 (2016). https://doi.org/10.1134/S1063785016110201

    Article  ADS  Google Scholar 

  33. V. E. Panin, E. E. Deryugin, and S. N. Kul’kov, J. Appl. Mech. Tech. Phys. 51 (4), 555 (2010). https://doi.org/10.1007/s10808-010-0072-4

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Savenkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, A.V., Morozov, V.A., Savenkov, G.G. et al. The Role of Graphene Admixtures in the Stability of Aluminum Oxide to Brittle Fracture under Pulsed Electrophysical Actions. Tech. Phys. 66, 470–475 (2021). https://doi.org/10.1134/S1063784221030154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784221030154

Navigation