Log in

Specifics of the Electrical Properties of Composite Solid Oxide Membranes Based on SrTi0.5Fe0.5O3–δ

  • Solid State Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The electrical properties of dual-phase fluorite-pervoskite oxide systems based on strontium titanate- ferrite (SrTi0.5Fe0.5O3–δ) are studied. We find that the oxygen ionic and ambipolar conductivities of strontium titanate-ferrite can be considerably improved by introducing the fluorite phase Ce0.8(Sm0.8Sr0.2)0.2O2–δ. This is advantageous considering the prospects of applying these types of composite materials in different electrochemical devices, e.g., as membrane materials in electrochemical converters for the production of hydrogen and syngas and anode materials in solid oxide fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Sunarso, S. Baumann, J. M. Serra, W. A. Meulenberg, S. Liu, Y. S. Lin, and J. C. Dinitz da Costa, J. Membr. Sci. 320, 13 (2008).

    Article  Google Scholar 

  2. P.-M. Geffroy, J. Fouletier, N. Richet, and T. Chartier, Chem. Eng. Sci. 87, 408 (2013).

    Article  Google Scholar 

  3. N. Mahato, A. Banerjiee, A. Gupta, Sh. Omar, and K. Balani, Prog. Mater. Sci. 72, 141 (2015).

    Article  Google Scholar 

  4. H. J. M. Bouwmeester, Catal. Today 82, 141 (2003).

    Article  Google Scholar 

  5. F. Schulze-Kuppers, S. F. P. ten Donkelaar, S. Baumann, P. Prigorodov, Y. J. Sohn, H. J. M. Bouwmeester, W. A. Meulenberg, and O. Guillon, Sep. Purif. Technol. 147, 414 (2015).

    Article  Google Scholar 

  6. P. Meuffels, J. Eur. Ceram. Soc. 27, 285 (2007).

    Article  Google Scholar 

  7. A. Murashkina, E. Pikalova, D. Medvedev, A. Demin, and P. Tsiakaras, Int. J. Hydrogen Energy 39, 12472 (2014).

    Article  Google Scholar 

  8. S. Steinsvik, R. Bugge, J. Gjonnes, J. Tafto, and T. Norby, J. Phys. Chem. Solids 58, 969 (1997).

    Article  ADS  Google Scholar 

  9. A. A. Murashkina, E. Yu. Pikalova, and A. K. Demin, Russ. J. Electrochem. 45, 542 (2009).

    Article  Google Scholar 

  10. N. H. Perry, D. Pergolesi, S. R. Bishop, and H. L. Tuller, Solid State Ionics 273, 18 (2015).

    Article  Google Scholar 

  11. D. P. Fagg, V. V. Kharton, J. R. Frade, and A. A. L. Ferreira, Solid State Ionics 156, 45 (2003).

    Article  Google Scholar 

  12. H. X. Luo, H. Q. Jiang, T. Klande, Z. W. Cao, F. Y. Liang, H. H. Wang, and J. R. Caro, Chem. Mater. 24, 2148 (2012).

    Article  Google Scholar 

  13. H. Cheng, N. Zhang, X. **ong, X. Lu, H. Zhao, S. Li, and Zh. Zhou, ACS Sustainable Chem. Eng. 3, 1982 (2015).

    Article  Google Scholar 

  14. Z. Wang, W. Sun, Zh. Zhu, T. Liu, and W. Liu, ACS Appl. Mater. Interfaces 5, 11038 (2013).

    Article  Google Scholar 

  15. A. A. Murashkina, V. S. Sergeeva, D. A. Medvedev, and A. K. Demin, Perspekt. Mater. 4, 29 (2012).

    Google Scholar 

  16. E. Yu. Pikalova, A. A. Murashkina, D. I. Medvedev, and A. K. Demin, RF Patent No. 2510385 (2014).

    Google Scholar 

  17. E. Pikalova, A. Murashkina, D. Medvedev, P. Pikalov, and S. Plaksin, Solid State Ionics 262, 640 (2014).

    Article  Google Scholar 

  18. V. V. Sal’nikov and E. Yu. Pikalova, Phys. Solid State 57, 1944 (2015).

    Article  ADS  Google Scholar 

  19. J. R. Jurado, M. T. Colomer, and J. R. Frade, J. Am. Ceram. Soc. 83, 2715 (2000).

    Article  Google Scholar 

  20. J. R. Jurado, M. T. Colomer, and J. R. Frade, Solid State Ionics 143, 251 (2001).

    Article  Google Scholar 

  21. B. Boukamp, Solid State Ionics 20, 31 (1986).

    Article  Google Scholar 

  22. A. A. Snarskii, I. V. Bezsudnov, and V. A. Sevryukov, Transport Processes in Macroscopic Disordered Media: From Mean-Field Theory to Percolation (LKI, Moscow, 2007).

    MATH  Google Scholar 

  23. D. S. McLachlan, M. Blaszkiewicz, and R. E. Newnham, J. Am. Ceram. Soc. 73, 2187 (1990).

    Article  Google Scholar 

  24. T. Shi, Y. Chen, and X. Guo, Prog. Mater. Sci. 80, 77 (2016).

    Article  Google Scholar 

  25. R. Merkle and J. Maier, Phys. Chem. Chem. Phys. 5, 2297 (2003).

    Article  Google Scholar 

  26. L. A. Dunyushkina, Russ. J. Electrochem. 43, 894 (2007).

    Article  Google Scholar 

  27. N. H. Perry, D. Pergolesi, S. R. Bishop, and H. L. Tuller, Solid State Ionics 273, 18 (2015).

    Article  Google Scholar 

  28. A. Rothschild, W. Menesklou, H. L. Tuller, and E. Ivers- Tiffee, Chem. Mater. 18, 3651 (2006).

    Article  Google Scholar 

  29. M. Mogensen, N. M. Sammes, and G. A. Tompsett, Solid State Ionics 129, 63 (2000).

    Article  Google Scholar 

  30. J. E. Bauerle, J. Phys. Chem. Solids 30, 2657 (1969).

    Article  ADS  Google Scholar 

  31. C. M. Kleinlogel and L. J. Gauckler, J.Electroceram. 129, 231 (2000).

    Article  Google Scholar 

  32. J. Jamnik, Solid State Ionics 157, 19 (2003).

    Article  Google Scholar 

  33. R. Waser, J. Am. Ceram. Soc. 74, 1934 (1991).

    Article  Google Scholar 

  34. R. Waser, Solid State Ionics 75, 89 (1995).

    Article  Google Scholar 

  35. R. Muccillo and J. R. Carmo, Mater. Res. Bull. 47, 1204 (2012).

    Article  Google Scholar 

  36. E. Chinarro, J. R. Jurado, R. M. Figueiredo, and J. R. Frade, Solid State Ionics 160, 161 (2003).

    Article  Google Scholar 

  37. E. Yu. Pikalova, A. A. Murashkina, and D. A. Medvedev, Russ. J. Electrochem. 47, 681 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Pikalova.

Additional information

Original Russian Text © V.V. Sal’nikov, E.Yu. Pikalova, A.A. Kol’chugin, I.V. Nikolaenko, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 3, pp. 409–417.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sal’nikov, V.V., Pikalova, E.Y., Kol’chugin, A.A. et al. Specifics of the Electrical Properties of Composite Solid Oxide Membranes Based on SrTi0.5Fe0.5O3–δ. Tech. Phys. 63, 398–406 (2018). https://doi.org/10.1134/S1063784218030209

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218030209

Navigation