Log in

Electric discharge in air in a deeply subcritical field of a quasi-optical microwave beam

  • Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We describe the results of experiments on initiation of an electric discharge in air in a quasi-optical microwave beam by an electromagnetic vibrator fixed above the screen. This method for initiating the electrical breakdown makes it possible to obtain a discharge at a level of the electric field component in the microwave, which two orders of magnitude lower than the minimal critical field of the electrodeless breakdown of air. In our experiments, the threshold value of the air pressure determining the low- and high-temperature forms of the microwave discharge are determined depending on the field level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. P. Grachev, I. I. Esakov, G. I. Mishin, M. Yu. Nikitin, and K. V. Khodataev, Tech. Phys. 30, 228 (1985).

    Google Scholar 

  2. N. D. Borisov, A. V. Gurevich, and G. M. Milikh, Artificial Ionized Area in the Atmosphere (Inst. of Terrestrial Magnetism, Ionisphere, and Radio Wave Propagation Akad. Nauk SSSR, Troitsk, 1986).

    Google Scholar 

  3. High-Frequency Discharge in Wave Fields, A Collection of Scientific Works (Inst. Prikl. Fiz AN SSSR, Gor’kii, 1988).

  4. A. S. Zarin, A. A. Kuzovnikov, and V. M. Shibkov, Freely Localized Microwave Discharge in Air (Neft’ i Gaz, Moscow, 1996).

    Google Scholar 

  5. A. V. Gurevich, Phys. Usp. 23, 862 (1980).

    Article  ADS  Google Scholar 

  6. L. P. Grachev, I. I. Esakov, G. I. Mishin, and K. V. Khodataev, Zh. Tekh. Fiz. 66 (7), 32 (1996).

    Google Scholar 

  7. K. V. Aleksandrov, L. P. Grachev, I. I. Esakov, V. V. Fedorov, and K. V. Khodataev, Tech. Phys. 51, 1448 (2006).

    Article  Google Scholar 

  8. I. I. Esakov, L. P. Grachev, K. V. Khodataev, and D. M. Van Wie, in Proceedings of the 32nd AIAA Plasmadynamics and Lasers Conference and the 4th Weakly Ionized Gases Workshop, Anaheim, USA, 2001, AIAA-2001-2939.

  9. Seiitiro Kumagai, Combustion (Khimiya, Moscow, 1979), translated from Japanese.

    Google Scholar 

  10. L. P. Grachev, I. I. Esakov, P. B. Lavrov, and A. A. Ravaev, Tech. Phys. 57, 230 (2012).

    Article  Google Scholar 

  11. K. V. Aleksandrov, L. P. Grachev, I. I. Esakov, and L. G. Severinov, Tech. Phys. Lett. 40, 274 (2014).

    Article  ADS  Google Scholar 

  12. K. V. Aleksandrov, L. P. Grachev, and I. I. Esakov, Tech. Phys. 52, 1557 (2007).

    Article  Google Scholar 

  13. L. P. Grachev, I. I. Esakov, K. V. Khodataev, and V. V. Tsyplenkov, Sov. J. Plasma Phys. 18, 216 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Grachev.

Additional information

Original Russian Text © K.V. Aleksandrov, L.P. Grachev, I.I. Esakov, A.A. Ravaev, L.G. Severinov, A.Yu. Yakovlev, 2016, published in Zhurnal Tekhnicheskoi Fiziki, 2016, Vol. 86, No. 4, pp. 28–33.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, K.V., Grachev, L.P., Esakov, I.I. et al. Electric discharge in air in a deeply subcritical field of a quasi-optical microwave beam. Tech. Phys. 61, 505–510 (2016). https://doi.org/10.1134/S1063784216040022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784216040022

Keywords

Navigation