Log in

Properties of a composite material based on multi-walled carbon nanotubes and an ionic liquid

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A solid-phase composite material based on multi-walled carbon nanotubes and an ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) has been synthesized. It has been found using infrared spectroscopy that vibrational modes of the ionic liquid are shifted by 4–12 cm−1 toward lower energies with respect to those observed in the initial fluid due to the interaction of ionic liquid molecules with the nanotubes. Electron microscopy has revealed that, in the composite, the ionic liquid is present on the surface of nanotubes and partially inside them. It has been shown that the degree of extraction of lanthanides from aqueous solutions with the use of the synthesized composite increases with increasing content of the ionic liquid in it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. R. Badamshina, M. P. Gafurova, and Ya. I. Estrin, Usp. Khim. 79, 1027 (2010).

    Article  Google Scholar 

  2. T. Fukushima and T. Aida, Chem.-Eur. J. 13(18), 5048 (2007).

    Article  Google Scholar 

  3. T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, and T. Aida, Science (Washington) 300, 2072 (2003).

    Article  ADS  Google Scholar 

  4. S. Chen, G. Wu, M. Sha, and S. Huang, J. Am. Chem. Soc. 129(9), 2416 (2007).

    Article  Google Scholar 

  5. M. Valcarcel, S. Cardenas, B.M. Simonet, Y. Moliner-Martinez, and R. Lucena, TrAC, Trends Anal. Chem. 27, 34 (2008).

    Article  Google Scholar 

  6. G. P. Rao, C. Lu, and F. Su, Sep. Purif. Technol. 58, 224 (2007).

    Article  Google Scholar 

  7. P. Liang, Y. Liu, and L. Guo, Spectrochim. Acta, Part B 60, 125 (2005).

    Article  ADS  Google Scholar 

  8. G. V. Myasoedova, N. P. Molochnikova, A. G. Tkachev, E. N. Tugolukov, S. V. Mishchenko, and B. F. Myasoedov, Radiochemistry 51(2), 156 (2009).

    Article  Google Scholar 

  9. A. N. Turanov, V. K. Karandashev, N. K. Evseeva, N. N. Kolesnikov, D. N. Borisenko, Russ. J. Phys. Chem. A 82(13), 2223 (2008).

    Article  Google Scholar 

  10. A. N. Turanov, V. K. Karandashev, and V. E. Baulin, Radiochemistry 50(3), 266 (2008).

    Article  Google Scholar 

  11. S. V. Mishchenko and A. G. Tkachev, Carbon Nanomaterials: Production, Properties, Application (Mashinostroenie, Moscow, 2008) [in Russian].

    Google Scholar 

  12. V. A. Chauzov, Yu. N. Studnev, M. G. Iznostkova, and A. V. Fokin, Zh. Obshch. Khim. 57, 54 (1987).

    Google Scholar 

  13. E. P. Horwitz and M. L. Ditz, Anal. Chim. Acta 238, 263 (1990).

    Article  Google Scholar 

  14. A. N. Turanov, V. K. Karandashev, V. E. Baulin, and E. N. Tsvetkov, Zh. Neorg. Khim. 40, 1296 (1995).

    Google Scholar 

  15. E. G. Rakov Nanotubes and Fullerenes (Logos, Moscow, 2006) [in Russian].

    Google Scholar 

  16. A. V. Bazhenov, T. N. Fursova, S. S. Grazhulene, A. N. Red’kin, and G. F. Telegin, Fullerenes, Nanotubes Carbon Nanostruct. 18, 564 (2010).

    Article  Google Scholar 

  17. S. Zhu, H. Zhang, and R. Bai, Mater. Lett. 61, 16 (2007).

    Article  Google Scholar 

  18. J.-L. Bantignies, J.-L. Sauvajol, A. Rahmani, and E. Flahaut, Phys. Rev. B: Condens. Matter 74(19), 195425 (2006).

    Article  ADS  Google Scholar 

  19. A. N. Bekhterev and V. M. Zolotarev, Opt. Spectrosc. 102(6), 890 (2007).

    Article  ADS  Google Scholar 

  20. R. J. Nemanich and S. A. Solin, Phys. Rev. B: Condens. Matter 20, 392 (1979).

    Article  ADS  Google Scholar 

  21. Y. Jeon, J. Sung, C. Seo, H. Lim, H. Cheong, M. Kang, B. Moon, Y. Ouchi, and D. Kim, J. Phys. Chem. B 112, 4735 (2008).

    Article  Google Scholar 

  22. A. Yokozeki, D. J. Kasprzak, and M. B. Shiflett, Phys. Chem. Chem. Phys. 9, 5018 (2007).

    Article  Google Scholar 

  23. J.-C. Lassegues, J. Grondin, D. Cavagnat, and P. Johansson, J. Phys. Chem. A 113(23), 6419 (2009).

    Article  Google Scholar 

  24. J. Grondin, J.-C. Lassegues, D. Cavagnat, T. Buffeteau, P. Johansson, and R. Holomb, J. Raman Spectrosc. 42, 733 (2011).

    Article  ADS  Google Scholar 

  25. J. Wang, H. Chu, and Y. Li, ACS Nano 2, 2540 (2008).

    Article  Google Scholar 

  26. http://etd.ohiolink.edu/sendpdf.cgi/BEKOU%20EVANGELIA.pdf?ucin1045773164

  27. T. Buffeteau, J. Grondin, and J. C. Lassegues, Appl. Spectrosc. 64, 112 (2010).

    Article  ADS  Google Scholar 

  28. Y. Liu, Y. Zhang, G. Wu, and J. Hu, J. Am. Chem. Soc. 128(23), 7456 (2006).

    Article  Google Scholar 

  29. S. A. Kislenko, I. S. Samoylov, and R. H. Amirov, Phys. Chem. Chem. Phys. 11, 5584 (2009).

    Article  Google Scholar 

  30. M. Sha, F. Zhang, G. Wu, H. Fang, C. Wang, S. Chen, Y. Zhang, and J. Hu, J. Phys. Chem. 128, 134504 (2008).

    Article  Google Scholar 

  31. A. N. Turanov, V. K. Karandashev, and V. E. Baulin, Radiochemistry 43(1), 72 (2001).

    Article  Google Scholar 

  32. H. Tao, W. Wei, X. Zeng, X. Liu, X. Zhang, and Y. Zhang, Microchim. Acta 166, 53 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Bazhenov or T. N. Fursova.

Additional information

Original Russian Text © A.V. Bazhenov, T.N. Fursova, A.N. Turanov, A.S. Aronin, V.K. Karandashev, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 3, pp. 553–559.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazhenov, A.V., Fursova, T.N., Turanov, A.N. et al. Properties of a composite material based on multi-walled carbon nanotubes and an ionic liquid. Phys. Solid State 56, 572–579 (2014). https://doi.org/10.1134/S1063783414030032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414030032

Keywords

Navigation