Log in

Nonmonotonic dependence of the work function of ytterbium nanofilms deposited on the Si(111)7 × 7 surface at room temperature on the film thickness

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The dependences of the work function of ytterbium nanofilms on their thickness are studied. The films are evaporated at room temperature on the Si(111)7 × 7 surface of silicon samples doped to different levels and having different types of conduction (n and p). It is shown that these dependences exhibit a pronounced nonmonotonic behavior, which does not depend on the type of silicon used. It is established that the amplitude of the nonmonotonic variations in the work function is governed by the surface microroughness of the deposited layers, so that larger amplitudes correspond to smoother films. The variations in the work function of the films due to the deposition of electrically negative Si atoms on their surface are investigated. It is revealed that the sign of the variation depends on the film thickness. This result strange at first glance is associated with the fact that the electron density distribution at the metal-film-vacuum interface depends nonmonotonically on the amount of deposited ytterbium. This nonmonotonic behavior is a manifestation of electron density standing waves (Friedel oscillations) generated in the films by the ytterbium-silicon interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-R. Tang, W.-W. Wang, and K.-N. Fan, Chem. Phys. Lett. 355, 410 (2002).

    Article  ADS  Google Scholar 

  2. D. V. Buturovich, M. V. Kuz’min, M. V. Loginov, and M. A. Mittsev, Fiz. Tverd. Tela (St. Petersburg) 48(11), 2085 (2006) [Phys. Solid State 48 (11), 2205 (2006)].

    Google Scholar 

  3. M. V. Kuz’min, M. V. Loginov, M. A. Mittsev, and T. V. Krachino, Fiz. Tverd. Tela (St. Petersburg) 37(4), 1030 (1995) [Phys. Solid State 37 (4), 559 (1995)].

    Google Scholar 

  4. T. V. Krachino, M. V. Kuz’min, M. V. Loginov, and M. A. Mittsev, Fiz. Tverd. Tela (St. Petersburg) 39(2), 256 (1997) [Phys. Solid Sate 39 (2), 224 (1997)].

    Google Scholar 

  5. Handbook on Semiconductors, Vol. 2: Optical Properties of Semiconductors, Ed. by M. Balkanski (North-Holland, Amsterdam, 1994).

    Google Scholar 

  6. D. P. Woodruff and T. A. Delchar, Modern Techniques of Surface Science (Cambridge University Press, Cambridge, 1984; Mir, Moscow, 1989).

    Google Scholar 

  7. F. K. Schulte, Surf. Sci. 55, 427 (1976).

    Article  ADS  Google Scholar 

  8. P. J. Feibelman, Phys. Rev. B: Condens. Matter 27, 1991 (1983).

    Article  ADS  Google Scholar 

  9. P. J. Feibelman and D. R. Haman, Phys. Rev. B: Condens. Matter 29, 6463 (1986).

    Article  ADS  Google Scholar 

  10. J. C. Doettger, Phys. Rev. B: Condens. Matter 53, 13133 (1996).

    Article  ADS  Google Scholar 

  11. A. Kieina, J. Peisert, and P. Scharoch, Surf. Sci. 432, 54 (1999).

    Article  ADS  Google Scholar 

  12. J. J. Pagel, C. M. Wei, M. Y. Chou, D.-A. Luh, T. Miller, and T.-C. Chiang, Phys. Rev. B: Condens. Matter 66, 233403 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mittsev.

Additional information

Original Russian Text © M.V. Kuz’min, M.V. Loginov, M.A. Mittsev, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 2, pp. 354–358.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuz’min, M.V., Loginov, M.V. & Mittsev, M.A. Nonmonotonic dependence of the work function of ytterbium nanofilms deposited on the Si(111)7 × 7 surface at room temperature on the film thickness. Phys. Solid State 50, 369–373 (2008). https://doi.org/10.1134/S1063783408020248

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783408020248

PACS numbers

Navigation