Log in

On the Synthesis, Microstructure, and Thermoelectric Properties of the Composite Material Bi2Te2.7Se0.3/Teδ Obtained from Asymmetric Nanoparticles

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract—

Composite materials Bi2Te2.7Se0.3/Teδ with varying concentration (δ = 0.15, 0.2, 0.25, and 0.3) are obtained by the solvothermal synthesis of initial powders and their subsequent spark plasma sintering. During the sintering process, the samples are textured, as a result of which lamellar grains are arranged in layers perpendicular to the direction of the application of pressure during sintering (the direction of the texture axis). Upon magnification, the concentration of superstoichiometric tellurium decreases the degree of texturing. The concentration of tellurium does not affect the average grain size. Superstoichiometric tellurium is distributed along the grain boundaries, as a result of which a structure characteristic of composite materials is formed. The release of tellurium at the grain boundaries leads to a change in the thermoelectric properties of the obtained materials. The electrical resistivity naturally increases, and the total thermal conductivity decreases with an increase in the concentration of superstoichiometric tellurium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. G. J. Snyder and A. H. Snyder, Energy Environ. Sci. 10, 2280 (2017).

    Article  Google Scholar 

  2. Y. Liu, Y. Zhang, K. H. Lim, M. Ibáñez, S. Ortega, M. Li, et al., ACS Nano 12, 7174 (2018).

    Article  Google Scholar 

  3. V. C. Theja, V. Karthikeyan, D. S. Assi, and V. A. Roy, ACS Appl. Electron. Mater. 4, 4781 (2022).

    Article  Google Scholar 

  4. M. Yaprintsev, A. Vasil’ev, O. Ivanov, D. Popkov, and E. Kudryavtsev, Solid State Sci. 135, 107083 (2023).

    Article  Google Scholar 

  5. M. Hong et al., ACS Nano 10, 4719 (2016).

    Article  Google Scholar 

  6. Q. Fu et al., J. Solid State Chem. 300, 122188 (2021).

    Article  Google Scholar 

  7. Y. S. Lim, S. M. Wi, and G. G. Lee, J. Eur. Ceram. Soc. 37, 3361 (2017).

    Article  Google Scholar 

  8. J. L. Mi, M. Søndergaard, P. Hald, et al., ACS Nano 4, 2523 (2010).

    Article  Google Scholar 

  9. W. Wang et al., J. Am. Chem. Soc. 132, 17316 (2010).

    Article  Google Scholar 

  10. M. Yaprintsev, A. Vasil’ev, and O. Ivanov, J. Eur. Ceram. Soc. 39, 1193 (2019).

    Article  Google Scholar 

  11. H. Shen et al., Materials, 4204 (2022).

  12. Q. Lognoné et al., J. Am. Ceram. Soc. 97, 2038 (2014).

    Article  Google Scholar 

  13. Z. Tang et al., J. Mater. Chem. C 3, 10597 (2015).

    Article  Google Scholar 

  14. F. K. Lotgering, J. Inorg. Nucl. Chem. 9, 113 (1959).

    Article  Google Scholar 

  15. L. Wang et al., J. Asian Ceram. Soc. 3, 183 (2015).

    Article  Google Scholar 

  16. I. Alvarez-Clemares et al., Adv. Eng. Mater. 12, 1154 (2010).

    Article  Google Scholar 

  17. Y. Liu et al., ACS Nano 12, 7174 (2018).

    Article  Google Scholar 

  18. Y. Wu et al., Adv. Sci. 6, 1901702 (2019).

    Article  Google Scholar 

  19. Y. Liu et al., ACS Nano. 12, 7174 (2018).

    Article  Google Scholar 

  20. Y. Pan, T. R. Wei, C. F. Wu, and J. F. Li, Mater. Chem. C 3, 10583 (2015).

    Article  Google Scholar 

  21. L. Hu, T. Zhu, X. Liu, and X. Zhao, Adv. Funct. Mater. 24, 5211 (2014).

    Article  Google Scholar 

  22. J. Suh, K. M. Yu, D. Fu, X. Liu, F. Yang, J. Fan, D. J. Smith, Y. H. Zhang, J. K. Furdyna, C. Dames, W. Walukiewicz, and J. Wu, Adv. Mater. 27, 3681 (2015).

    Article  Google Scholar 

  23. S. Chu, Nature (London, U.K.) 488, 294 (2012).

    Article  ADS  Google Scholar 

  24. M. S. Dresselhaus, Nature (London, U.K.) 414, 332 (2001).

    Article  ADS  Google Scholar 

  25. L. N. Lukyanova, A. A. Shabaldin, A. Y. Samunin, and O. A. Usov, Semiconductors 56, 10 (2022).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 21-73-00199). The work was carried out using equipment of the Joint Research Center of Belgorod State National Research University “Technology and Materials.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Yapryntsev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yapryntsev, M.N., Ozerov, M.S. On the Synthesis, Microstructure, and Thermoelectric Properties of the Composite Material Bi2Te2.7Se0.3/Teδ Obtained from Asymmetric Nanoparticles. Semiconductors (2024). https://doi.org/10.1134/S1063782624700027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1063782624700027

Keywords:

Navigation