Log in

High Sensitivity of Halide Vapor Phase Epitaxy Grown Indium Oxide Films to Ammonia

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The effect of H2, NH3, CO and O2 on the electrically conductive properties of In2O3 films grown by halide vapor phase epitaxy has been studied. In the temperature range of 200−550°C, In2O3 films demonstrate gas sensitivity to all considered gases, a relatively high operation speed and repeatability of cycles. The greatest response to NH3 was obtained, which exceeded 33 arb. units at a temperature of 400°C and a gas concentration of 1000 ppm−1. A qualitative mechanism of gas sensitivity of In2O3 films is proposed. The obtained gas-sensitive characteristics are compared with known In2O3 sensors based on various materials. It is shown that the method of halide vapor phase epitaxy makes it possible to obtain indium oxide films with high gas sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. B. Lu, P. Chen, J. Zou, B. Yao, and H. Chen, Phys. Status Solidi A 215(21), 1800401 (2018).

    Article  ADS  Google Scholar 

  2. G. Domenech-Gila, J. Samaa, P. Pellegrinoa, S. Barthb, I. Graciac, C. Canec, and A. Romano-Rodrigueza, Sensors Actuators B: Chem. 238, 447 (2016).

    Article  Google Scholar 

  3. J. A. Spencer, A. L. Mock, A. G. Jacobs, M. Schubert, Y. Zhang, and M. J. Tadjer, Appl. Phys. Rev. 9(1), 011315 (2022).

    Article  ADS  CAS  Google Scholar 

  4. S. H. Babu, S. Kaleemulla, N. M. Rao, and C. Krishnamoorthi, J. Magn. Magn. Mater. 416, 66 (2016).

    Article  ADS  CAS  Google Scholar 

  5. P. D. C. King, T. D. Veal, F. Fuchs, Ch. Y. Wang, D. J. Payne, A. Bourlange, H. Zhang, G. R. Bell, V. Cimalla, O. Ambacher, R. G. Egdell, F. Bechstedt, and C. F. McConville, Phys. Rev. B 79, 205211 (2009).

    Article  ADS  Google Scholar 

  6. M. Stokey, R. Korlacki, S. Knight, A. Ruder, M. Hilfiker, Z. Galazka, K. Irmscher, Y. Zhang, H. Zhao, V. Darakchieva, and M. Schubert, J. Appl. Phys. 129, 225102 (2021).

    Article  ADS  CAS  Google Scholar 

  7. K. H. L. Zhang, V. K. Lazarov, T. D. Veal, F. E. Oropeza, C. F. McConville, R. G. Egdell, and A. Walsh, J. Phys.: Condens. Matter 23, 334211 (2011).

    CAS  PubMed  Google Scholar 

  8. A. Walsh and D.O. Scanlon, Phys. Rev. B 88, 161201 (2013).

    Article  ADS  Google Scholar 

  9. T. de Boer, M. F. Bekheet, A. Gurlo, R. Riedel, and A. Moewes, Phys. Rev. B 93, 155205 (2016).

    Article  ADS  Google Scholar 

  10. V. Golovanova, M. A. Maki-Jaskari, T. T. Rantalab, G. Korotcenkovc, V. Brinzaric, A. Cornetd, and J. Moranted, Sensors Actuators B: Chem. 106 (2), 563 (2005).

    Article  Google Scholar 

  11. H. Jiang, L. Zhao, L. Gai, L. Ma, Y. Maa, and M. Lib, CrystEngComm. 35, 7003 (2013).

  12. A. Gurlo and R. Riedel, IEEE Sensors 4, 1505 (2008).

    Google Scholar 

  13. L. Gao, F. Ren, Z. Cheng, Y. Zhang, Q. **angc, and J. Xu, CrystEngComm. 17 3268 (2015).

  14. N. Sui, S. Cao, P. Zhang, T. Zhou, and T. Zhang, J. Hazardous Mater. 418, 126290 (2021).

    Article  CAS  Google Scholar 

  15. L. Song, K. Dou, R. Wang, P. Leng, L. Luo, Y. **, C. C. Kaun, N. Han, F. Wang, and Y. Chen, ACS Appl. Mater. and Interfaces 12(1), 1270 (2019).

    Article  Google Scholar 

  16. F. Chen, M. Yang, X. Wang, Y. Song, L. Guo, N. **e, X.Kou, X. Xu, Y. Sun, and G. Lu, Sensors Actuators B: Chem. 290, 459 (2019).

    Article  CAS  Google Scholar 

  17. R. Togashi, S. Numata, M. Hayashida, T. Suga, K. Goto, A. Kuramata, S. Yamakoshi, P. Paskov, B. Monemar, Y. Kumagai. Jpn. J. Appl. Phys., 55(12), 1202B3 (2016).

  18. H. Nakahata, R. Togashi, K. Goto, B. Monemar, Y. Kumagai. J. Cryst. Growth, 563, 126111 (2021).

    Article  CAS  Google Scholar 

  19. S. I. Stepanov, V. I. Nikolaev, A. I. Pechnikov, M. P. Scheglov, A. V. Chikiryaka, A. V. Chernykh, M. A. Odnobludov, V. D. Andreeva, A. Y. Polyakov. Phys. Status Solidi A, 218 (3), 2000442 (2020).

    Article  ADS  Google Scholar 

  20. V. I. Nikolaev, A. V. Almaev, B. O. Kushnarev, A. I. Pechnikov, S. I. Stepanov, A. V. Chikiryaka, R. B. Timashov, M. P. Shcheglov, P. N. Butenko, E. V. Chernikov. Pis’ma ZhTF, 48 (14), 37 (2022) (in Russian).

    Google Scholar 

  21. N. N. Yakovlev, A. V. Almaev, V. I. Nikolaev, B. O. Kushnarev, A. I. Pechnikov, S. I. Stepanov, A. V. Chikiryaka, R. B. Timashov, M. P. Scheglov, P. N. Butenko, D. A. Almaev, E. V. Chernikov. Materials Today Commun., 34, 105241 (2023).

    Article  CAS  Google Scholar 

  22. X. Hou, Y. Zou, M. Ding, Y. Qin, Z. Zhang, X. Ma, P. Tan, S. Yu, X. Zhou, X. Zhao, G. Xu, H. Sun, S. Long. J. Phys. D: Appl. Phys., 54, 043001 (2020).

    Article  ADS  Google Scholar 

  23. S. J. Pearton, Jiancheng Yang, Patrick H. Cary, F. Ren, Jihyun Kim, Marko J. Tadjer, Michael A. Mastro. Appl. Phys. Rev., 5(1), 011301 (2018).

    Article  ADS  Google Scholar 

  24. D. Kaur, M. Kumar. Adv. Optical Mater, 9(9), 2002160 (2021).

    Article  CAS  Google Scholar 

  25. A. V. Almaev, V. I. Nikolaev, N. N. Yakovlev, P. N. Butenko, S. I. Stepanov, A. I. Pechnikov, M. P. Scheglov, E. V. Chernikov, Sensors Actuators B: Chem., 364, 131904 (2022).

    Article  CAS  Google Scholar 

  26. A. V. Almaev, V. I. Nikolaev, P. N. Butenko, S. I. Stepanov, A. I. Pechnikov, N. N. Yakovlev, I. M. Sinyugin, S. V. Shapenkov, M. P. Scheglov. Phys. Status Solidi B, 259 (2), 2100306 (2021).

    Article  ADS  Google Scholar 

  27. A. V. Almaev, V. I. Nikolaev, S. I. Stepanov, A. I. Pechnikov, A. V. Chikiryaka, N. N. Yakovlev, V. M. Kalygina, V. V. Kopyev, E. V. Chernikov. J. Phys. D: Appl. Phys., 53(41), 414004 (2020).

    Article  CAS  Google Scholar 

  28. N. N. Yakovlev, V. I. Nikolaev, S. I. Stepanov, A. V. Almaev, A. I. Pechnikov, E. V. Chernikov, B. O. Kushnarev. IEEE Sensors J., 21(13), 8 (2021).

    Article  Google Scholar 

  29. Z. Galazka, R. Uecker, R. Fornari. J. Cryst. Growth, 388, 61 (2014).

    Article  ADS  CAS  Google Scholar 

  30. H. Kostlin, R. Jost, W. Lems. Phys. Status Solidi A, 29(1), 87 (1975).

    Article  ADS  Google Scholar 

  31. P. Thilakan, J. Kumar. Thin Sol. Films, 292(1−2), 50 (1997).

    Article  ADS  CAS  Google Scholar 

  32. V. I. Gaman. Fizika poluprovodnikovykh gazovykh sensorov (Tomsk, Izd-vo NTL, 2012). (in Russian).

    Google Scholar 

  33. A. Walsh, C. R. A. Catlow, A. A. Sokol, S. M. Woodley. Chem. Mater., 21, 4962 (2009).

    Article  CAS  Google Scholar 

  34. K. K. Makhija, A. Ray, R. M. Patel, U. B. Trivedi, H. N. Kapse. Bull. Mater. Sci., 28(1), 9 (2005).

    Article  CAS  Google Scholar 

  35. H. Kim, C. **, S. An, C. Lee. Ceramics International, 38(5), 3563 (2012).

    Article  CAS  Google Scholar 

  36. N. Yamazoe, K. Shimanoe. J. Sensors, 21 (2009).

  37. V. I. Gaman. Russian Phys. J., 51(4), 425 (2008).

    Article  ADS  CAS  Google Scholar 

  38. N. Vorobyeva, M. Rumyantseva, V. Platonov, D. Filatova, A. Chizhov, A. Marikutsa, I. Bozhev, A. Gaskov. Nanomaterials, 11 (11), 2938 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. D. H. Kim, W-S. Kim, S. B. Lee, S-H. Hong. Sensors Actuators B: Chem., 147 (2), 653 (2010).

    Article  CAS  Google Scholar 

  40. M. S. Wagh, G. H. Jain, D. R. Patil, S. A. Patil, L. A. Patil. Sensors Actuators B: Chem., 115(1), 128 (2006).

    Article  CAS  Google Scholar 

  41. C. Li, D. Zhang, B. Lei, S. Han, X. Lie, C. Zhou. J. Phys. Chem., 107(45), 12451 (2003).

    Article  CAS  Google Scholar 

  42. A. A. Hameed, S. Hamid, A. L. Jumaili. Iraqi J. Sci., 62(7), 2204 (2021).

    Google Scholar 

  43. W-C. Chang, X. Qi, J-C. Kuo, S.L. Lee, S-K. Ng, D. Chen. CrystEngComm., (16), 5125 (2011).

  44. V. Srivastava, K. Jain. Sensors Actuators B: Chem., 133(1), 46 (2008).

    Article  CAS  Google Scholar 

  45. Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, Y. Li. Sensors Actuators B: Chem., 129 (2), 666 (2008).

    Article  CAS  Google Scholar 

  46. N. D. Cuong, Y. W. Park, S. G. Yoon. Sensors Actuators B: Chem., 140(1), 240 (2009).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The for Collective Use “Nanotech” Institute of Strength Physics and Materials Science of Siberian Branch of RAS for providing FESEM images.

Funding

The study was supported by the Russian Science Foundation (grant no. 20-79-10043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Almaev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almaev, D.A., Almaev, A.V., Nikolaev, V.I. et al. High Sensitivity of Halide Vapor Phase Epitaxy Grown Indium Oxide Films to Ammonia. Semiconductors 57, 579–586 (2023). https://doi.org/10.1134/S1063782623030028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782623030028

Keywords:

Navigation