Log in

Dimensional Modeling of the Synthesis and Conductivity of Colloidal Quantum Dots

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Using the example of synthesized colloidal quantum dots (QDs) of certain semiconductors (CdSe, PbS, HgSe, InSb), the limiting sizes of nanocrystals with perfect structure during their synthesis are determined depending on the ratio of their volume and surface energies, which can vary from 6 nm for QD-InSb to 17 nm for QD-CdSe. The conductivity of single QDs in the interelectrode nanogap is single-electron, and the I–V characteristic has regions of electron tunneling through potential barriers, Coulomb current limitation, and resonant peaks of quantum conductivity. Dimensional relations are determined and nomograms of the relationship of the dimensional parameters are constructed to ensure the conditions for quantum conductivity. The assumption about terahertz current oscillations is substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. B. Brichkin and V. F. Razumov, Russ. Chem. Rev. 85, 1297 (2016).

    Article  ADS  Google Scholar 

  2. A. E. Zhukov, Lasers and Microlasers Based on Quantum Dots (Politekh-Press, St. Petersburg, 2019) [in Russian].

    Google Scholar 

  3. M. Alizadeh-Ghodsi, M. Pourhassan-Moghaddam, A. Zavari-Nematabad, B. Walker, N. Annabi, and A. Akbarzadeh, Part. Syst. Charact. 36, 1800302 (2019).

    Article  Google Scholar 

  4. D. Porotnikov and M. Zamkov, J. Phys. Chem. C 124, 21895 (2020).

    Article  Google Scholar 

  5. N. D. Zhukov, I. T. Yagudin, N. P. Aban’shin, and D. S. Mosiyash, Tech. Phys. Lett. 46, 1088 (2020).

    Article  ADS  Google Scholar 

  6. M. V. Gavrikov, E. G. Glukhovskoi, and N. D. Zhukov, in Proceedings of the 12th International Conference on Micro and Nanotechnologies in Electronics (Nal’chik, Russia, 2021), p. 327. http://mnte.kbsu.ru/files/book2021.pdf.

    Google Scholar 

  7. V. P. Dragunov, I. G. Neizvestnyi, and V. A. Gridchin, Principles of Nanoelectronics (Logos, Moscow, 2006) [in Russian].

    Google Scholar 

  8. G. F. Glinskii, Tech. Phys. Lett. 44, 232 (2018).

    Article  ADS  Google Scholar 

  9. F. A. Serrano and S. H. Dong, J. Quantum Chem. 113, 2282 (2013).

    Article  Google Scholar 

  10. C. Gréboval, A. Chu, N. Goubet, C. Livache, and S. Ithurria, Chem. Rev. 121, 3627 (2021).

    Article  Google Scholar 

  11. N. D. Zhukov, T. D. Smirnova, A. A. Khazanov, O. Yu. Tsvetkova, and S. N. Shtykov, Semiconductors 55 (12), 1203 (2021).

  12. N. D. Zhukov, S. A. Sergeev, A. A. Khazanov, and I. T. Yagudin, Tech. Phys. Lett. 47 (22), 37 (2021).

  13. D. V. Krylsky and N. D. Zhukov, Tech. Phys. Lett. 46, 901 (2020).

    Article  ADS  Google Scholar 

  14. N. T. K. Thanh, N. Maclean, and S. Mahiddine, Chem. Rev. 114, 7610 (2014).

    Article  Google Scholar 

  15. A. I. Rusanov, Surf. Sci. Rep. 58, 111 (2005).

    Article  ADS  Google Scholar 

  16. D. Kashchiev, J. Chem. Phys. 120, 3749 (2004).

    Article  ADS  Google Scholar 

  17. J. Wang, Ch. F. Mbah, T. Przybilla, et al., Nat. Commun. 9, 5259 (2018).

    Article  ADS  Google Scholar 

  18. Z. Ou, Z. Wang, B. Luo, E. Luijten, and Q. Chen, Nat. Mater. 19, 450 (2020).

    Article  ADS  Google Scholar 

  19. Y. Han, Nat. Mater. 19, 377 (2020).

    Article  ADS  Google Scholar 

  20. M. Kristl and M. Drofenik, Ultrason. Sonochem. 15, 695 (2008).

    Article  Google Scholar 

  21. M. N. Magomedov, Phys. Solid State 46, 954 (2004).

    Article  ADS  Google Scholar 

  22. Yu. S. Barash, Van der Waals Forces (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  23. N. V. Sibirev, M. A. Timofeeva, A. D. Bol’shakov, M. V. Nazarenko, and V. G. Dubrovskii, Phys. Solid State 52, 1531 (2010).

    Article  ADS  Google Scholar 

  24. N. D. Zhukov, M. V. Gavrikov, V. F. Kabanov, and I. T. Yagudin, Semiconductors 55, 470 (2021).

    Article  ADS  Google Scholar 

  25. N. D. Zhukov and M. V. Gavrikov, Mezhdun. Nauch.-Issled. Zh., No. 8 (110), 19 (2021).

  26. R. A. Suris and I. A. Dmitriev, Phys. Usp. 46, 745 (2003).

    Article  ADS  Google Scholar 

  27. N. T. Bagraev, A. D. Buravlev, L. E. Klyachkin, A. M. Malyarenko, V. Gel’khoff, V. K. Ivanov, and I. A. Shelykh, Semiconductors 36, 439 (2002).

    Article  ADS  Google Scholar 

  28. N. D. Zhukov, O. Yu. Tsvetkova, M. V. Gavrikov, A. G. Rokakh, T. D. Smirnova, and S. N. Shtykov, Semiconductors 56 (4), 401 (2022).

  29. S. A. Sergeev, M. V. Gavrikov, and N. D. Zhukov, Tech. Phys. Lett. (in press).

Download references

ACKNOWLEDGMENTS

We are grateful to O.Yu. Tsvetkova for fabrication of the quantum-dot samples.

Funding

The study was supported by the Russian Foundation for Basic Research, grant no. 20-07-00307.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Zhukov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, N.D., Gavrikov, M.V. & Shtykov, S.N. Dimensional Modeling of the Synthesis and Conductivity of Colloidal Quantum Dots. Semiconductors 56, 269–274 (2022). https://doi.org/10.1134/S1063782622040066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782622040066

Keywords:

Navigation