Log in

Effect of Neutron Irradiation on the Spectrum of Deep-Level Defects in GaAs Grown by Liquid-Phase Epitaxy in a Hydrogen and Argon Atmosphere

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

We present the results of experimental studies of the capacitance–voltage (C–V) characteristics and the spectra of deep-level transient spectroscopy (DLTS) of graded high-voltage p+p0in0 GaAs diodes fabricated by liquid-phase epitaxy at a crystallization-onset temperatures of 900°C from one solution melt due to self do** with background impurities, in a hydrogen or argon atmosphere, before and after irradiation with neutrons. After irradiation with neutrons, the DLTS spectra reveal wide defect-cluster regions with acceptor-like negatively charged traps of the n0-type layer, resulting from the emission of electrons from states located above the middle of the band gap. It is found that the differences in the C–V characteristics of the structures grown in a hydrogen or argon atmosphere are due to the different doses of irradiation of p+p0in0 GaAs structures and different degrees of compensation of shallow donor impurities by deep traps in the layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. M. Sobolev, F. Yu. Soldatenkov, and V. A. Kozlov, Semiconductors 50, 924 (2016).

    Article  ADS  Google Scholar 

  2. M. M. Sobolev, P. R. Brunkov, S. G. Konnikov, M. N. Stepanova, V. G. Nikitin, V. P. Ulin, A. Sh. Dolbaya, T. D. Kamushadze, and R. M. Maisuradze, Sov. Phys. Semicond. 25, 637 (1989).

    Google Scholar 

  3. P. N. Brunkov, S. Gaibullaev, S. G. Konnikov, V. G. Nikitin, M. I. Papentsev, and M. M. Sobolev, Sov. Phys. Semicond. 25, 205 (1991).

    Google Scholar 

  4. G. M. Martin, A. Mitonneau, and A. Mircea, Electron. Lett. 13, 666 (1977). https://doi.org/10.1049/el:19770473

    Article  ADS  Google Scholar 

  5. G. Guiloiot, Revue Phys. Appl. 23, 833 (1988). https://doi.org/10.1051/rphysap:01988002305083300

    Article  Google Scholar 

  6. Sh. Makram-Ebeid and P. Boher, Rev. Phys. Appl. 23, 847 (1988).

    Article  Google Scholar 

  7. C. E. Barnes, T. E. Zipperian, and L. R. Dawson, J. Electron. Mater. 14, 95 (1985). https://doi.org/10.1007/BF02656670

    Article  ADS  Google Scholar 

  8. R. M. Fleming, D. V. Lang, C. H. Seager, E. Bielejec, G. A. Patrizi, and J. M. Campbell, J. Appl. Phys. 107, 123710-5 (2010). https://doi.org/10.1063/1.3448118

    Article  ADS  Google Scholar 

  9. D. Pons and J. C. Bourgoin, J. Phys. C: Solid State Phys. 18, 3839 (1985).

    Article  ADS  Google Scholar 

  10. V. N. Brudnyi and V. V. Peshev, Semiconductors 37, 140 (2003.

    Article  ADS  Google Scholar 

  11. J.  G. Williams,  J. U. Patel,  A. M. Ougouag,  and S.-Y. Yang, J. Appl. Phys. 70, 4931 (1991). https://doi.org/10.1063/1.349039

    Article  ADS  Google Scholar 

  12. F. Yu. Soldatenkov, V. G. Danil’chenko, and V. I. Ko-rol’kov, Semiconductors 41, 211 (2007).

    Article  ADS  Google Scholar 

  13. V. G. Danil’chenko, V. I. Korol’kov, and F. Yu. Soldatenkov, Semiconductors 43, 1055 (2009).

    Article  ADS  Google Scholar 

  14. V. A. Kozlov, F. Y. Soldatenkov, V. G. Danil’chenko, V. I. Korol’kov, and I. L. Shul’pina, in Proceedings of the 25th Advanced Semiconductor Manufacturing Conference, Saratoga Springs, USA, May 19–21, 2014, p. 139. https://doi.org/10.1109/ASMC.2014.6847011

  15. L. S. Berman, V. G. Danil’chenko, V. I. Korol’kov, and F. Yu. Soldatenkov, Semiconductors 34, 541 (2000).

    Article  ADS  Google Scholar 

  16. M. M. Sobolev, F. Y. Soldatenkov, and L. Shul’pina, J. Appl. Phys. 123, 161588 (2018). https://doi.org/10.1063/1.5011297

    Article  ADS  Google Scholar 

  17. M. M. Sobolev and F. Yu. Soldatenkov, Semiconductors 52, 165 (2018).

    Article  ADS  Google Scholar 

  18. M. M. Sobolev, O. S. Ken, O. M. Sreseli, D. A. Yavsin, and S. A. Gurevich, Tech. Phys. Lett. 44, 287 (2018).

    Article  ADS  Google Scholar 

  19. M. M. Sobolev, O. S. Ken, O. M. Sreseli, D. A. Yavsin, and S. A. Gurevich, Semicond. Sci. Technol. 34, 085003 (2019). https://doi.org/10.1088/1361-6641/ab2c2123

    Article  ADS  Google Scholar 

  20. M. M. Sobolev and F. Yu. Soldatenkov, Semiconductors 54, 1260 (2020).

    Article  ADS  Google Scholar 

  21. M. M. Sobolev, F. Y. Soldatenkov, and V. G. Danil’chenko, J. Appl. Phys. 128, 095705 (2020). https://doi.org/10.1063/5.0018317

    Article  ADS  Google Scholar 

  22. A. Sharma, P. Kumar, B. Singh, S. R. Chaudhuri, and S. Ghosh, Appl. Phys. Lett. 99, 023301 (2011). https://doi.org/10.1063/1.3607955

    Article  ADS  Google Scholar 

  23. M. M. Sobolev, D. A. Yavsin, and S. A. Gurevich, Semiconductors 53, 1393 (2019).

    Article  ADS  Google Scholar 

  24. H. Silva, H. L. Gomes, Yu. G. Pogorelov, P. Stallinga, D. M. de Leeuw, J. P. Araujo, J. B. Sousa, S. C. J. Mes-kers, G. Kakazei, S. Cardoso, and P. P. Freitas, Appl. Phys. Lett. 94, 202107 (2009). https://doi.org/10.1063/1.3134484

    Article  ADS  Google Scholar 

  25. E. S. Yang, J. Appl. Phys. 45, 3801 (1974).

    Article  ADS  Google Scholar 

  26. M. M. Sobolev, A. V. Gittsovich, M. I. Papentsev, I. V. Kochnev, and B. S. Yavich, Sov. Phys. Semicond. 26, 985 (1992).

    Google Scholar 

  27. D. V. Davydov, A. L. Zakgeim, F. M. Snegov, M. M. Sobolev, A. E. Chernyakov, A. S. Usikov, and N. M. Shmidt, Tech. Phys. Lett. 33, 143 (2007).

    Article  ADS  Google Scholar 

  28. D. Stievenard, X. Boddaert, and J. C. Bourgoin, Phys. Rev. B 34, 4048 (1986). https://doi.org/10.1103/PhysRevB.34.4048

    Article  ADS  Google Scholar 

  29. M. M. Sobolev, A. R. Kovsh, V. V. Ustinov, A. Y. Egorov, A. E. Zhukov, and Y. G. Musikhin, J. Electron. Mater. 28, 491 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. M. Sobolev or F. Yu. Soldatenkov.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobolev, M.M., Soldatenkov, F.Y. Effect of Neutron Irradiation on the Spectrum of Deep-Level Defects in GaAs Grown by Liquid-Phase Epitaxy in a Hydrogen and Argon Atmosphere. Semiconductors 56, 107–114 (2022). https://doi.org/10.1134/S1063782622010158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782622010158

Keywords:

Navigation