Log in

Ohmic Contacts to CVD Diamond with Boron-Doped Delta Layers

  • XXIII INTERNATIONAL SYMPOSIUM “NANOPHYSICS AND NANOELECTRONICS”, NIZHNY NOVGOROD, MARCH 11–14, 2019
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Various methods for the formation of ohmic contacts to boron-doped δ layers in CVD-diamond epitaxial structures are investigated. In the first variant, an additional thin heavily doped layer was formed on the diamond surface to which an ohmic contact is formed. Then, the surface p+ layer between the contact pads is etched out; therefore, the current in the structure flows only through a buried δ layer. In the second approach, the doped diamond selectively grows in the contact windows under a metallic mask after preliminary etching of the undoped diamond layer (cap) up to the δ layer. In this case, the heavily doped p+ layer forms an end contact to the δ layer. These two variants differ in terms of the conditions of applicability, the complexity of the manufacturing technology, the value of the contact resistance, and can be used to solve problems in which it is necessary to have a different quality of the contacts, such as the formation of transistor structures or test cells for measuring physical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. Chicot, A. Fiori, P. Volpe, T. Tran Thi, J. Gerbedoen, J. Bousquet, M. Alegre, J. Pinero, D. Araujo, F. Jomard, A. Soltani, J. de Jaeger, J. Morse, J. Hartwig, N. Tranchant, et al., J. Appl. Phys. 116, 083702 (2014).

  2. N. Donato, D. Pagnano, E. Napoli, G. Longobardi, and F. Udrea, Diamond Relat. Mater. 78, 73 (2017).

  3. A. Fiori, F. Jomard, T. Teraji, S. Koizumi, J. Isoya, E. Gheeraert, and E. Bustarret, Appl. Phys. Express 6, 045801 (2013).

  4. A. L. Vikharev, A. M. Gorbachev, M. A. Lobaev, A. B. Muchnikov, D. B. Radishev, V. A. Isaev, V. V. Chernov, S. A. Bogdanov, M. N. Drozdov, and J. E. Butler, Phys. Status Solidi RRL 10, 324 (2016).

  5. J. E. Butler, A. L. Vikharev, A. M. Gorbachev, M. A. Lobaev, A. B. Muchnikov, D. B. Radishev, V. A. Isaev, V. V. Chernov, S. A. Bogdanov, M. N. Drozdov, E. V. Demidov, E. A. Surovegina, V. I. Shashkin, A. Davidov, H. Tan, et al., Phys. Status Solidi RRL 11, 1600329 (2017).

  6. A. Fiori, F. Jomard, T. Teraji, G. Chicot, and E. Bustarret, Thin Solid Films 557, 222 (2014).

  7. C. Mer-Calfati, N. Tranchant, P. N. Volpe, F. Jomard, S. Weber, P. Bergonzo, and J. C. Arnault, Mater. Lett. 115, 283 (2014).

  8. M. Ogura, H. Kato, T. Makino, H. Okushi, and S. Yamasaki, J. Cryst. Growth 317, 60 (2011).

  9. J. F. Prins, J. Phys. D: Appl. Phys. 22, 1562 (1989).

  10. R. Kalish, Appl. Surf. Sci. 117–118, 558 (1997).

  11. V. Venkatesan, D. M. Malta, K. Das, and A. M. Belu, J. Appl. Phys. 74, 1179 (1993).

  12. J. C. Pinero, M. P. Villar, D. Araujo, J. Montserrat, B. Antunez, and P. Godignon, Phys. Status Solidi A 214, 1700230 (2017).

  13. T. Tachibana, B. E. Williams, and J. T. Glass, Phys. Rev. B 45, 11975 (1992).

  14. J. Nakanishi, A. Otsuki, T. Oku, O. Ishiwata, and M. Murakami, J. Appl. Phys. 76, 2293 (1994).

  15. M. Yokoba, Yasuo Koide, A. Otsuki, F. Ako, T. Oku, and M. Murakami, J. Appl. Phys. 81, 6815 (1997).

  16. P. E. Viljoen, E. S. Lambers, and P. H. Holloway, J. Vac. Sci. Technol. B 12, 2997 (1994).

  17. K. L. Moazed, J. R. Zeidler, and M. J. Taylor, J. Appl. Phys. 68, 2246 (1990).

  18. Y. Chen, M. Ogura, S. Yamasaki, and H. Okushi, Semicond. Sci. Technol. 20, 860 (2005).

  19. M. P. Dukhnovskii, A. K. Ratnikova, and Yu. Yu. Fedorov, RF Patent No. RU2436189 C1, Byull. Izobret., No. 34 (2011).

Download references

Funding

The technological part of the study was supported by the Russian Science Foundation, project no. 17-19-01580. Part of the study related to the SIMS investigations was supported by the Russian Foundation for Basic Research, project no. 18-02-00565. The electrophysical measurements were carried out as a part of the state task of the Institute for Physics of Microstructures, Russian Academy of Sciences, for 2019 (project GZ 0030-2019-0021-С-01). In the study, equipment of the Center of Collective Use “Physics and Technology of Micro- and Nanostructures” was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Arkhipova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipova, E.A., Demidov, E.V., Drozdov, M.N. et al. Ohmic Contacts to CVD Diamond with Boron-Doped Delta Layers. Semiconductors 53, 1348–1352 (2019). https://doi.org/10.1134/S106378261910004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378261910004X

Keywords:

Navigation