Log in

Size-Dependent Optical Properties of Colloidal CdS Quantum Dots Passivated by Thioglycolic Acid

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of studies of the optical properties of ensembles of colloidal CdS quantum dots passivated by thioglycolic acid are reported. The average dimensions of the quantum dots lie in the range from 1.7 to 5.8 nm. By X-ray diffraction studies and Raman spectroscopy, it is established that quantum dots crystallize with the formation of a cubic crystal lattice. The systematic features of the quantum-confinement effect in the optical absorption and luminescence spectra, as well as in the luminescence excitation spectra, are established. The features manifest themselves as a blue shift of the corresponding bands with decreasing quantum-dot dimensions. From analysis of the nanosecond luminescence kinetics, it is concluded that experimentally observed radiative recombination proceeds by the donor–acceptor mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Bera, L. Qian, T.-K. Tseng, and P. H. Holloway, Materials 3, 2260 (2010).

    Article  ADS  Google Scholar 

  2. T. Pons and H. Mattoussi, Ann. Biomed. Eng. 37, 1934 (2009).

    Article  Google Scholar 

  3. D. E. Prasuhn, A. Feltz, J. B. Blanco-Canosa, K. Susumu, M. H. Steawart, B. C. Mei, A. V. Yakovlev, Ch. Loukou, J. Mallet, M. Oheim, Ph. E. Dawson, and I. L. Medintz, ACS Nano 4, 5487 (2010).

    Article  Google Scholar 

  4. A. I. Ekimov, I. A. Kudryavtsev, M. G. Ivanov, and Al. L. Efros, J. Lumin. 46, 83 (1990).

    Article  Google Scholar 

  5. Sh. Tiwari and S. Tiwari, Cryst. Res. Technol. 41, 78 (2006).

    Article  Google Scholar 

  6. J. R. Fernandez, M. de Souza-Parise, and P. C. Morais, Surf. Sci. 601, 3805 (2007).

    Article  ADS  Google Scholar 

  7. O. Ye. Rayevska, G. Ya. Grodzyuk, V. M. Dzhagan, O. L. Stroyuk, S. Ya. Kuchmiy, V. F. Plyusnin, V. P. Grivin, and M. Ya. Valakh, J. Phys. Chem. C 114, 22478 (2010).

    Article  Google Scholar 

  8. A. V. Katsaba, S. A. Ambrozevich, A. G. Vitukhnovsky, V. V. Fedyanin, A. N. Lobanov, V. S. Krivobok, R. B. Vasiliev, and I. G. Samatov, J. Appl. Phys. 113, 184306 (2013).

    Article  ADS  Google Scholar 

  9. M. Nirmal, D. J. Norris, M. Kuno, M. G. Bawendi, Al. L. Efros, and M. Rosen, Phys. Rev. Lett. 75, 3728 (1995).

    Article  ADS  Google Scholar 

  10. J. Li and J.-B. **a, Phys. Rev. B 62, 12613 (2000).

    Article  ADS  Google Scholar 

  11. D. Kim, T. Mishima, K. Thomihira, and M. Nakayama, J. Phys. Chem. C 112, 10668 (2008).

    Article  Google Scholar 

  12. A. Hasselbarth, A. Eychmuller, and H. Weller, Chem. Phys. Lett. 203, 271 (1993).

    Article  ADS  Google Scholar 

  13. N. Chestnoy, T. D. Harris, R. Hull, and L. E. Brus, J. Phys. Chem. 90, 3393 (1986).

    Article  Google Scholar 

  14. Y. Wang, A. Suna, J. E. F. Hilinski, P. A. Lucas, and R. D. Johnson, J. Chem. Phys. 92, 6927 (1990).

    Article  ADS  Google Scholar 

  15. S. F. Wuister and A. Meijerink, J. Lumin. 102–103, 338 (2003).

    Article  Google Scholar 

  16. A. Eychmüller, A. Hässelbarth, L. Katsikas, and H. Weller, J. Lumin. 48–49, 745 (1991).

    Article  Google Scholar 

  17. M. O’Neil, J. Marohn, and G. McLendon, J. Phys. Chem. 94, 4356 (1990).

    Article  Google Scholar 

  18. Y. Kobayashi, T. Nishimura, H. Yamaguchi, and N. Tamai, J. Phys. Chem. Lett. 2, 1051 (2011).

    Article  Google Scholar 

  19. D. I. Chepic, A. L. Efros, A. I. Ekimov, M. G. Ivanov, V. A. Kharchenko, L. A. Kudriavtsev, and T. V. Yazeva, J. Lumin. 47, 113 (1990).

    Article  Google Scholar 

  20. Y. Wang and N. Herron, Phys. Rev. B 42, 7253 (1990).

    Article  ADS  Google Scholar 

  21. A. Aboulaich, D. Billaud, M. Abyan, L. Balan, J.-J. Gaumet, G. Medjadhi, J. Ghanbaja, and R. Schneider, ACS Appl. Mater. Interfaces 4, 2561 (2012).

    Article  Google Scholar 

  22. Y.-M. Mo, Y. Tang, F. Gao, J. Yang, and Y.-M. Zhangn, Ind. Eng. Chem. Res. 51, 5995 (2012).

    Article  Google Scholar 

  23. S. Santhi, E. Bernstein, and F. Paille, J. Lumin. 117, 101 (2006).

    Article  Google Scholar 

  24. D. Kim, T. Mishima, and M. Nakayama, Phys. E (Amsterdam, Neth.) 21, 363 (2004).

  25. T. Vossmeyer, L. Katsikas, M. Giersig, I. G. Popovic, K. Diesner, A. Chemseddine, A. Eychmuller, and H. Weller, J. Phys. Chem. 98, 7665 (1994).

    Article  Google Scholar 

  26. N. Herron, Y. Wang, and H. Eckert, J. Am. Chem. Soc. 112, 1322 (1990).

    Article  Google Scholar 

  27. P. Reiss, M. Protiere, and L. Li, Small 5, 154 (2009).

    Article  Google Scholar 

  28. N. G. Piven, Yu. B. Khalavka, and L. P. Shcherbak, Inorg. Mater. 44, 1047 (2008).

    Article  Google Scholar 

  29. M. Tayebi, M. T. Yaraki, A. Mogharei, M. Ahmadieh, M. Tahriri, D. Vashaee, and L. Tayebi, J. Fluoresc. 26, 1787 (2016).

    Article  Google Scholar 

  30. M. S. Smirnov, D. I. Stasel’ko, O. V. Ovchinnikov, A. N. Latyshev, O. V. Buganov, S. A. Tikhomirov, and A. S. Perepelitsa, Opt. Spectrosc. 115, 651 (2013).

    Article  ADS  Google Scholar 

  31. O. V. Ovchinnikov, M. S. Smirnov, B. I. Shapiro, T. S. Shatskikh, A. N. Latyshev, Pham Thi Hai Mien, and V. Yu. Khokhlov, Opt. Spectrosc. 115, 340 (2013).

    Article  ADS  Google Scholar 

  32. N. V. Korolev, M. S. Smirnov, O. V. Ovchinnikov, and T. S. Shatskikh, Phys. E (Amsterdam, Neth.) 68, 159 (2015).

  33. O. V. Ovchinnikov, M. S. Smirnov, N. V. Korolev, P. A. Golovinski, and A. G. Vitukhnovsky, J. Lumin. 179, 413 (2016).

    Article  Google Scholar 

  34. M. S. Smirnov, O. V. Buganov, E. V. Shabunya-Klyachkovskaya, S. A. Tikhomirov, O. V. Ovchinnikov, A. G. Vitukhnovsky, A. S. Perepelitsa, A. S. Matsukovich, and A. V. Katsaba, Phys. E (Amsterdam, Neth.) 84, 511 (2016).

  35. A. G. Milekhin, L. L. Sveshnikova, T. A. Duda, N. V. Surovtsev, S. V. Adishchev, and D. R. T. Zahn, JETP Lett. 88, 799 (2008).

    Article  ADS  Google Scholar 

  36. I. Honma, T. Sano, and H. Komiyama, J. Phys. Chem. 97, 6692 (1993).

    Article  Google Scholar 

  37. W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003).

    Article  Google Scholar 

  38. M. Majumder, S. Karan, and B. Mallik, J. Lumin. 131, 2792 (2011).

    Article  Google Scholar 

  39. L. E. Shea-Rohwer and J. E. Martin, J. Lumin. 127, 499 (2007).

    Article  Google Scholar 

  40. D. Kim, M. Miyamoto, T. Mishima, and M. Nakayama, J. Appl. Phys. 98, 083514 (2005).

    Article  ADS  Google Scholar 

  41. J. E. Martin and L. E. Shea-Rohwer, J. Lumin. 121, 573 (2006).

    Article  Google Scholar 

  42. G. H. Döchler, Phys. Status Solidi B 45, 705 (1971).

    Article  ADS  Google Scholar 

  43. X. S. Zhao, J. Schroeder, P. D. Persans, and T. G. Bilodeau, Phys. Rev. B 43, 12580 (1991).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by the Russian Foundation for Basic Research, project Bel_mol_a no. 17-52-04090, and Belarusian Republican Foundation for Fundamental Research, project no. F17RM-077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Smirnov.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratenko, T.S., Smirnov, M.S., Ovchinnikov, O.V. et al. Size-Dependent Optical Properties of Colloidal CdS Quantum Dots Passivated by Thioglycolic Acid. Semiconductors 52, 1137–1144 (2018). https://doi.org/10.1134/S1063782618090087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618090087

Keywords

Navigation