Log in

Numerical simulation of the properties of solar cells based on GaPNAs/Si heterostructures and GaN nanowires

  • XX International Symposium “Nanophysics and Nanoelectronics”, Nizhny Novgorod, March 14–18, 2016
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Using methods of numerical simulation, the modes of operation are considered and structures are determined for solar cells of combined dimension based on a planar GaPNAs/Si heterostructure and an array of GaN nanowires. It is shown that the array of GaN nanowires features antireflective properties at a level no lower than 2.5% under illumination with the AM1.5D solar spectrum. The efficiency of solar cells is affected to the greatest extent by the lifetimes of minority charge carriers and the thickness of photoactive layers. It is demonstrated that the efficiency of two-junction solar cells composed of GaPNAs alloy layers and an array of GaN nanowires on a Si substrate can be as high as 32% for AM1.5D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Fujimoto, H. Yonezu, K. Momose, A. Utsimi, and Y. Furukawa, J. Cryst. Growth 227–228, 491 (2001).

    Article  Google Scholar 

  2. K. Momose, H. Yonezu, Y. Fujimoto, K. Ojima, Y. Furukawa, A. Utsumi, and K. Aiki, Jpn. J. Appl. Phys. 41 (12R), 7301 (2002).

    Article  ADS  Google Scholar 

  3. S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors (Wiley, New York, 2009), Vol. 28, p. 400.

    Book  Google Scholar 

  4. H. P. **n and C. W, Tu, Appl. Phys. Lett. 77, 2180 (2000).

    Article  ADS  Google Scholar 

  5. Z. Liu, H. Kawanami, and I. Sakata, Appl. Phys. Lett. 96, 032106 (2010).

    Article  ADS  Google Scholar 

  6. J. F. Geisz, D. J. Friedman, and S. R. Kurtz, in Proceedings of the 29th IEEE Photovoltaic Specialists Conference PVSC’2002, New Orleans, LA, May 19–24, 2002, p. 864.

    Google Scholar 

  7. D. A. Kudryashov, A. S. Gudovskikh, E. V. Nikitina, and A. Yu. Egorov, Semiconductors 48, 381 (2014).

    Article  ADS  Google Scholar 

  8. J. F. Geisz and D. J, Friedman, Semicond. Sci. Technol. 17, 769 (2002).

    Article  ADS  Google Scholar 

  9. A. Mozharov, A. Bolshakov, G. Cirlin, and I. Mukhin, Phys. Status Solidi RRL 9, 507 (2015).

    Article  Google Scholar 

  10. F. Glas, Phys. Rev. B 74, 121302 (2006).

    Article  ADS  Google Scholar 

  11. M. Bjork, B. Ohlsson, T. Sass, A. Persson, C. Thelander, M. Magnusson, K. Deppert, L. Wallenberg, and L. Samuelson, Nano Lett. 2, 87 (2002).

    Article  ADS  Google Scholar 

  12. G. Leibiger, V. Gottschalch, M. Schubert, G. Benndorf, and R. Schwabe, Phys. Rev. B 65, 245207 (2002).

    Article  ADS  Google Scholar 

  13. K. Umeno, S. M. Kim, Y. Furukawa, H. Yonezu, and A. Wakahara, J. Cryst. Growth 301, 539 (2007).

    Article  ADS  Google Scholar 

  14. H. P. **n and C. W, Tu, Appl. Phys. Lett. 77, 2180 (2000).

    Article  ADS  Google Scholar 

  15. M. Gungerich, P. J. Klar, W. Heimbrodt, G. Weiser, A. Lindsay, C. Harris, and E. P. O’Reilly, in Dilute III–V Nitride Semiconductors and Material Systems (Springer, Berlin, 2008), Vol. 15, p. 592.

    Google Scholar 

  16. G. Biwa, H. Yaguchi, K. Onabe, and Y. Shiraki, J. Cryst. Growth 195, 574 (1998).

    Article  ADS  Google Scholar 

  17. M. E. Law, E. Solley, M. Liang, D. E. Burk, et al., IEEE Electron Dev. Lett. 12, 401 (1991).

    Article  ADS  Google Scholar 

  18. G. A. M. Hurkx, D. B. M. Klaassen, and M. P. G. Knuvers, IEEE Trans. Electron Dev. 39, 331 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Mozharov.

Additional information

Original Russian Text © A.M. Mozharov, D.A. Kudryashov, A.D. Bolshakov, G.E. Cirlin, A.S. Gudovskikh, I.S. Mukhin, 2016, published in Fizika i Tekhnika Poluprovodnikov, 2016, Vol. 50, No. 11, pp. 1543–1547.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozharov, A.M., Kudryashov, D.A., Bolshakov, A.D. et al. Numerical simulation of the properties of solar cells based on GaPNAs/Si heterostructures and GaN nanowires. Semiconductors 50, 1521–1525 (2016). https://doi.org/10.1134/S1063782616110191

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782616110191

Navigation