Log in

Streamers Initiated by a Capacitive Discharge at Air Pressure 0.2–6 Torr

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The paper presents a study of diffuse plasma jets (DPJs), which have a red color and consist of streamers (ionization waves). It has been found that plasma generated in air at pressures of 0.2–4 Torr by a repetitively pulsed capacitive discharge in a dielectric tube initiates two DPJs in one pulse, each with up to three streamers. It has been found that two streamers propagating from the circular electrodes in opposite directions are formed by one voltage pulse of positive polarity. Using an ICCD camera and a silicon PMT, it is shown that the arrival of the front edge of a positive streamer in the region finally reached by the front edge of a negative streamer that was generated first at the front edge of the negative voltage pulse leads to the formation of a third thin streamer in the form of a cone with a small apex angle. It has been found that the direction of motion of the third streamer coincides with the direction of the streamers initiating it, but its speed is two orders of magnitude lower. It is shown that, at low air pressures, the speed of the first positive streamers is higher than that of the negative streamers and the distance to which they propagate at a generator voltage of 7 kV and an air pressure of 0.2 Torr exceeds 1 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Sprites, Elves and Intense Lightning Discharges (NATO Science Series II: Mathematics, Physics, and Chemistry, Vol. 225), Ed. by M. Füllekrug, E. A. Mareev, and M. J. Rycroft (Springer Science & Business Media, Luxembourg, 2006).

    Google Scholar 

  2. A. Jehl, T. Farges, and E. Blanc, J. Geophys. Res.: Space Phys. 118, 454 (2013). https://doi.org/10.1029/2012JA018144

    Article  ADS  Google Scholar 

  3. G. K. Garipov, B. A. Khrenov, P. A. Klimov, V. V. Klimenko, E. A. Mareev, O. Martines, E. Mendoza, V. S. Morozenko, M. I. Panasyuk, I. H. Park, E. Ponce, L. Rivera, H. Salazar, V. I. Tulupov, N. N. Vedenkin, et al., J. Geophys. Res.: Atmos. 118, 370 (2013). https://doi.org/10.1029/2012JD017501

    Article  ADS  Google Scholar 

  4. A. Huang, G. Lu, J. Yue, W. Lyons, F. Lucena, F. Lyu, S. A. Cummer, W. Zhang, L. Xu, X. Xue, and S. Xu, Geophys. Res. Lett. 45, 13 (2018). https://doi.org/10.1029/2018GL079576

    Article  Google Scholar 

  5. M. G. McHarg, H. C. Stenbaek-Nielsen, and T. Kammae, Geophys. Res. Lett. 34, L06804 (2007). https://doi.org/10.1029/2006GL027854

  6. U. Ebert, S. Nijdam, C. Li, A. Luque, T. Briels, and E. van Veldhuizen, J. Geophys. Res.: Space Phys. 115, A00E43 (2010). https://doi.org/10.1029/2009JA014867

  7. V. P. Pasko, J. Qin, and S. Celestin, Surv. Geophys. 34, 797 (2013). https://doi.org/10.1007/s10712-013-9246-y

    Article  ADS  Google Scholar 

  8. L. M. Vasilyak, S. V. Kostyuchenko, N. N. Kudryavtsev, and I. V. Filyugin, Phys.–Usp. 37, 247 (1994). https://doi.org/10.1070/PU1994v037n03ABEH000011

    Article  Google Scholar 

  9. N. B. Anikin, N. A. Zavialova, S. M. Starikovskaia, and A. Y. Starikovskii, IEEE Trans. Plasma Sci. 36, 902 (2008). https://doi.org/10.1109/TPS.2008.924504

    Article  ADS  Google Scholar 

  10. B. Huang, C. Zhang, J. Qiu, X. Zhang, Y. Ding, and T. Shao, Plasma Sources Sci. Technnol. 28, 095001 (2019).

  11. Y. Goto, Y. Ohba, and K. Narita, J. Atmos. Electr. 27, 105 (2007).

    Google Scholar 

  12. V. Tarasenko, N. Vinogradov, E. Baksht, and D. Sorokin, J. Atmos. Sci. Res. 5 (3), 26 (2022). https://doi.org/10.30564/jasr.v5i3.4858

    Article  Google Scholar 

  13. V. F. Tarasenko, E. Kh. Baksht, and N. P. Vinogradov, Prikl. Fiz., No. 4, 11 (2022). https://doi.org/10.51368/1996-0948-2022-4-11-17

  14. E. Kh. Baksht, N. P. Vinogradov, and V. F. Tarasenko, Opt. Atmos. Okeana 35, 777 (2022). https://doi.org/10.15372/AOO20220911

    Article  Google Scholar 

  15. D. Sorokin, V. Tarasenko, E. Kh. Baksht, and N. P. Vinogradov, Eur. J. Environ. Earth Sci. 3 (6), 42 (2022).https://doi.org/10.24018/ejgeo.2022.3.6.322

    Article  Google Scholar 

  16. Yu. P. Raizer, Gas Discharge Physics (ID Intellekt, Dolgoprudnyi, 2009; Springer, Berlin, 1997).

  17. A. Yu. Starikovskiy, N. L. Aleksandrov, and M. N. Shneider, J. Appl. Phys. 129, 063301 (2021). https://doi.org/10.1063/5.0037669

  18. S. Wu, W. Cheng, G. Huang, F. Wu, C. Liu, X. Liu, C. Zhang, and X. Lu, Phys. Plasmas 25, 123507 (2018). https://doi.org/10.1063/1.5042669

  19. V. F. Tarasenko, V. S. Kuznetsov, V. A. Panarin, V. S. Skakun, E. A. Sosnin, and E. Kh. Baksht, JETP Lett. 110, 85 (2019). https://doi.org/10.1134/S0021364019130137

    Article  ADS  Google Scholar 

  20. V. Tarasenko, E. Baksht, V. Kuznetsov, V. Panarin, V. Skakun, E. Sosnin, and D. Beloplotov, J. Atmos. Sci. Res. 3, 28 (2020). https://ojs.bilpublishing.com/index.php/jasr.

    Google Scholar 

  21. V. F. Tarasenko, E. A. Sosnin, V. S. Skakun, V. A. Panarin, M. V. Trigub, and G. S. Evtushenko, Phys. Plasmas 24, 043514 (2017). https://doi.org/10.1063/1.4981385

  22. E. A. Sosnin, N. Yu. Babaeva, A. V. Kozyrev, V. Yu. Kozhevnikov, G. V. Naidis, V. S. Skakun, V. A. Panarin, and V. F. Tarasenko, Phys.–Usp. 64, 191 (2021). https://doi.org/10.3367/UFNe.2020.03.038735

    Article  Google Scholar 

  23. V. A. Panarin, V. S. Skakun, E. K. Baksht, E. A. Sosnin, V. S. Kuznetsov, and D. A. Sorokin, Plasma Phys. Rep. 48, 812 (2022).

    Article  ADS  Google Scholar 

  24. T. Hoder, Z. Bonaventura, V. Prukner, F. J. Gordillo-Vázquez, and M. Šimek, Plasma Sources Sci. Technol. 29, 03LT01 (2020). https://doi.org/10.1088/1361-6595/ab7087

  25. H. C. Stenbaek-Nielsen, M. G. McHarg, T. Kanmae, and D. D. Sentman, Geophys. Res. Lett. 34, L11105 (2007). https://doi.org/10.1029/2007GL029881

  26. H. C. Stenbaek-Nielsen, T. Kanmae, M. G. McHarg, and R. Haaland, Surv. Geophys. 34, 769 (2013).

    Article  ADS  Google Scholar 

  27. N. A. Zabotin and J. W. Wright, Geophys. Res. Lett. 28, 2593 (2001).

    Article  ADS  Google Scholar 

  28. R. Janalizadeh and V. P. Pasko, in Proceedings of the American Geophysical Union Fall Meeting, Washington, D. C., 2018, Paper AE21A-08. https://agu.confex.com/agu/fm18/meetingapp.cgi/Paper/444075.

  29. V. Tarasenko, N. Vinogradov, D. Beloplotov, A. Burachenko, M. Lomaev, and D. Sorokin, Nanomaterials 12, 652 (2022). https://doi.org/10.3390/nano12040652

    Article  Google Scholar 

  30. M. Hervig, R. E. Thompson, M. McHugh, L. L. Gordley, J. M. Russell III, and M. E. Summers, Geophys. Res. Lett. 28, 971 (2001). https://doi.org/10.1029/2000GL012104

    Article  ADS  Google Scholar 

  31. E. M. Bazelyan and Yu. P. Raizer, Lightning Physics and Lightning Protection (IOP, Bristol, 2000; Nauka, Moscow, 2001).

Download references

ACKNOWLEDGMENTS

We are grateful to D.A. Sorokin for supporting this work, D.S. Pechenitsin for the creation of the generator, and V.S. Skakun for help with the experiment.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-15-2021-1026 dated November 15, 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Tarasenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasenko, V.F., Baksht, E.K., Panarin, V.A. et al. Streamers Initiated by a Capacitive Discharge at Air Pressure 0.2–6 Torr. Plasma Phys. Rep. 49, 786–794 (2023). https://doi.org/10.1134/S1063780X23700393

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23700393

Keywords:

Navigation