Log in

Pulsed Inductive RF Discharge as an Effective Working Process of an RF Ion Source

  • APPLIED PHYSICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A pulsed RF discharge is considered experimentally as a working process of an RF ion source. It is shown that an increase in the ion current can be obtained in comparison with the continuous operation mode when such a discharge is operating. This increase is the greater, the greater the difference between the characteristic time of the drop of the ion current after turning off the RF power and the rise time of the ion current when the RF power is turned on. The pulsation parameters at which the ion current is maximized are estimated. It is shown that an external constant longitudinal magnetic field in the range of 0–7.2 mT nonmonotonically affects the maximum and equilibrium value of the ion current in a pulse and does not affect the decrease rate of the ion current after the RF power is turned off.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. D. M. Goebel and I. Katz, Fundamentals of Electric Propulsion: Ion and Hall Thrusters (Wiley, Hoboken, NJ, 2008).

    Book  Google Scholar 

  2. S. Mazouffre, Plasma Sources Sci. Technol. 25, 033002 (2016). https://doi.org/10.1088/0963-0252/25/3/033002

  3. K. H. Groh and H. W. Loeb, J. Propul. Power 7, 573 (1991). https://doi.org/10.2514/3.23364

    Article  Google Scholar 

  4. R. Killinger, H. Leiter, and R. Kukies, in Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, 2007, Paper AIAA 2007-5200. https://doi.org/10.2514/6.2007-5200

  5. H. J. Leiter, R. Killinger, H. Bassner, J. Müller, and R. Kukies, in Proceedings of the 27th International Electric Propulsion Conference, Pasadena, 2001, Paper IEPC-01-104. http://electricrocket.org/IEPC/104_4.pdf.

  6. E. Turkoz and M. Celik, in Proceedings of 6th International Conference on Recent Advances in Space Technologies, Istanbul, 2013, p. 511. https://doi.org/10.1109/RAST.2013.6581262

  7. H. W. Loeb, K. H. Schartner, B. K. Meyer, D. Feili, S. Weis, and D. Kirmse, in Proceedings of the 29th International Electric Propulsion Conference, Princeton, 2005, Paper IEPC-2005-031.

  8. E. A. Kralkina, K. V. Vavilin, I. I. Zadiriev, P. A. Nekliudova, and G. V. Shvydkiy, Vacuum 167, 136 (2019). https://doi.org/10.1016/j.vacuum.2019.05.041

    Article  ADS  Google Scholar 

  9. V. Godyak, J. Phys. D: Appl. Phys. 46, 283001 (2013). https://doi.org/10.1088/0022-3727/46/28/283001

  10. G. A. Hebner and C. B. Fleddermann, J. Appl. Phys. 82, 2814 (1997). https://doi.org/10.1063/1.366277

    Article  ADS  Google Scholar 

  11. J. Han, P. Pribyl, W. Gekelman, and A. Paterson, Phys. Plasmas 27, 063509 (2020). https://doi.org/10.1063/5.0007288

  12. J.-H. Park, D.-H. Kim, Y.-S. Kim, and C.-W. Chung, Plasma Sources Sci. Technol. 26, 055016 (2017). https://doi.org/10.1088/1361-6595/aa61c2

  13. P. Saikia, H. Bhuyan, M. Favre, E. Wyndham, and F. Veloso, Phys. Plasmas 24, 013503 (2017). https://doi.org/10.1063/1.4973233

  14. X. Tang and D. M. Manos, Plasma Sources Sci. Technol. 8, 594 (1999). https://doi.org/10.1088/0963-0252/8/4/311

    Article  ADS  Google Scholar 

  15. M. A. Lieberman and S. Ashida, Plasma Sources Sci. Technol. 5, 145 (1996). https://doi.org/10.1088/0963-0252/5/2/006

    Article  ADS  Google Scholar 

  16. P. Subramonium and M. J. Kushner, Appl. Phys. Lett. 85, 721 (2004). https://doi.org/10.1063/1.1776617

    Article  ADS  Google Scholar 

  17. B. Ramamurthi and D. J. Economou, Plasma Sources Sci. Technol. 11, 324 (2002). https://doi.org/10.1088/0963-0252/11/3/315

    Article  ADS  Google Scholar 

  18. P. Subramonium and M. J. Kushner, J. Vac. Sci. Technol., A 20, 325 (2002). https://doi.org/10.1116/1.1434965

    Article  Google Scholar 

  19. D. P. Lymberopoulos, V. I. Kolobov, and D. J. Economou, J. Vac. Sci. Technol., A 16, 564 (1998). https://doi.org/10.1116/1.581072

    Article  Google Scholar 

  20. F. Gao, X.-Y. Lv, Y.-R. Zhang, and Y.-N. Wang, J. A-ppl. Phys. 126, 093302 (2019). https://doi.org/10.1063/1.5114661

  21. X.-Y. Lv, F. Gao, Q.-Z. Zhang, and Y.-N. Wang, Chin. Phys. B 30, 045202 (2021). https://doi.org/10.1088/1674-1056/abd16b

  22. J. Han, P. Pribyl, W. Gekelman, A. Paterson, S. J. Lanham, C. Qu, and M. J. Kushner, Phys. Plasmas 26, 103503 (2019). https://doi.org/10.1063/1.5115415

  23. C. Qu, S. K. Nam, and M. J. Kushner, Plasma Sources Sci. Technol. 29, 085006 (2020). https://doi.org/10.1088/1361-6595/aba113

  24. A. Aanesland, A. Meige, and P. Chabert, J. Phys.: Conf. Ser. 162, 012009 (2009). https://doi.org/10.1088/1742-6596/162/1/012009

  25. I. Zadiriev, E. Kralkina, K. Vavilin, A. Nikonov, and G. Shvidkiy, Plasma Sci. Technol. 25, 025405 (2023). https://doi.org/10.1088/2058-6272/ac8fca

  26. E. A. Kralkina, A. A. Rukhadze, P. A. Nekliudova, V. B. Pavlov, A. K. Petrov, and K. V. Vavilin, AIP Adv. 8, 035217 (2018). https://doi.org/10.1063/1.5023631

Download references

Funding

This work was supported by Russian Science Foundation grant no. 21-72-10090, https://rscf.ru/en/project/21-72-10090/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Zadiriev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadiriev, I.I., Kralkina, E.A., Vavilin, K.V. et al. Pulsed Inductive RF Discharge as an Effective Working Process of an RF Ion Source. Plasma Phys. Rep. 49, 1424–1428 (2023). https://doi.org/10.1134/S1063780X23601268

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23601268

Keywords:

Navigation