Log in

The Discharge Characteristics of Capacitively Coupled Ar Plasma as the Change of Pressure

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The discharge characteristics of coupled capacitively argon plasmas with change of pressure are studied. The mean electron temperature and electron density are calculated via Ar spectral lines at different pressures (10–80 mTorr) and at four frequencies (13.56, 40.68, 94.92, and 100 MHz). From 10–30 mTorr, the mean electron temperature and the electron density both decrease with the increase of pressure at certain frequency. From 30–80 mTorr, the mean electron temperature similarly first increase then decrease with pressure at 94.92 and 100 MHz, and decrease at 40.68 MHz and increase at 13.56 MHz with pressure. The largest mean electron temperature is found at 40.68 MHz. From 40–80 mTorr, the electron density both increase at 94.92 and 100 MHz. The electron density change little at 40.68 and 13.56 MHz with pressure increase. Particle-in-cell/Monte Carlo collisions (PIC/MCC) method developed within the Vsim 8.0 simulation package is used to simulate the electron density, the potential distribution and the electron energy probability function (EEPF) under the experimental condition. Sheath width decrease with the pressure increase. The EEPF of 40.68 MHz is bi-Maxwellian and 100 MHz are nearly Maxwellian with a large population of low-energy electrons with the increase of pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Y. Yang and M. J. Kushner, J. Appl. Phys. 108, 113306 (2010).

  2. D. Y. Sung, V. Volynets, W. Hwang, Y. Sung, S. Lee, M. Choi, and G.-H. Kim, J. Vac. Sci. Technol., A 30, 061301 (2012).

  3. G. Q. Yin, Y. Y. Zhou, Y. D. Zhang, and Q. H. Yuan, IEEE Trans. Plasma Sci. 48, 946 (2020).

    Article  ADS  Google Scholar 

  4. Z. Fang, Z. Ding, T. Shao, and C. Zhang, IEEE Trans. Dielectr. Electr. Insul. 23, 2288 (2016).

    Article  Google Scholar 

  5. S. Sharma, N. Sirse, M. M. Turner, and A. R. Ellingboe, Phys. Plasmas 25, 063501 (2018).

  6. Q. H. Yuan, P. Ren, S. S. Liu, J. J. Wang, and G. Q. Yin, Phys. Lett. A 384, 126367 (2020).

  7. T. Samir, Y. Liu, L.-L. Zhao, and Y.-W. Zhou, Chin. Phys. B 26, 115201 (2017).

  8. H. Takatsuka, M. Noda, Y. Yonekura, Y. Takeuchi, and Y. Yamauchi, Sol. Energy 77, 951 (2004).

    Article  ADS  Google Scholar 

  9. N. Sirse, T. Tsutsumi, M. Sekine, M. Hori, and A. R. Ellingboe, J. Phys. D: Appl. Phys. 50, 335205 (2017).

  10. X.-M. Zhu, W.-C. Chen, S. Zhang, Z.-G. Guo, D.‑W. Hu, and Y.-K. Pu, J. Phys. D: Appl. Phys. 40, 7019 (2007).

    Article  ADS  Google Scholar 

  11. S. J. You, S. K. Ahn, and H. Y. Chang, Appl. Phys. Lett. 89, 171502 (2006).

  12. S. Wilczek, J. Trieschmann, J. Schulze, E. Schuenge, R. P. Brinkmann, A. Derzsi, I. Korolov, Z. Donkó, and T. Mussenbrock, Plasma Sources Sci. Technol. 24, 024002 (2015).

  13. A. Perret, P. Chabert, J. Jolly, and J.-P. Booth, Appl. Phys. Lett. 86, 021501 (2005).

  14. S. K. Babu, S. Kelly, S. Kechkar, P. Swift, S. Daniels, and M. M. Turner, Plasma Sources Sci. Technol. 28, 115008 (2019).

  15. Y.-R. Zhang, X. Xu, S.-X. Zhao, A. Bogaerts, and Y.‑N. Wang, Phys. Plasmas 17, 113512 (2010).

  16. G.-Q. Yin, J.-J. Wang, S.-S. Gao, Y.-B. Jiang, and Q.‑H. Yuan, Chin. Phys. B 30, 095204 (2021).

  17. A. Saeed, M. Abrar, A. W. Khan, F. Jan, B. S. Khan, H. U. Shah, M. Zaka-ul-Islam, and M. Zakaullah, Radiat. Eff. Defects Solids 171, 384 (2016).

    Article  ADS  Google Scholar 

  18. J. Li, X.-M. Zhu, and Y.-K. Pu, J. Phys. D: Appl. Phys. 44, 455203 (2011).

  19. Y. Ralchenko, Phys. Scr. 2009, 014025 (2009).

  20. T. Gans, J. Schulze, D. O’Connell, U. Czarnetzki, R. Faulkner, A. R. Ellingboe, and M. M. Turner, Appl. Phys. Lett. 89, 261502 (2006).

  21. T. V. Rakhimova, O. V. Braginsky, K. S. Klopovskiy, A. S. Kovalev, D. V. Lopaev, O. V. Proshina, A. T. Rakhimov, D. Shamiryan, A. N. Vasilieva, and D. G. Voloshin, IEEE Trans. Plasma Sci. 37, 1683 (2009).

    Article  ADS  Google Scholar 

  22. T. Fujimoto, J. Phys. Soc. Jpn. 47, 273 (1979).

    Article  ADS  Google Scholar 

  23. M. Tanişli, N. Şahin, M. Younus, N. U. Rehman, and S. Demir, Phys. Plasmas 24, 102123 (2017).

  24. N. Ohno, M. Razzak, H. Ukai, S. Takamura, and Y. Uesugi, Plasma Fusion Res. 1, 028 (2006).

  25. F. J. Gordillo-Vázquez, M. Camero, and C. Gómez-Aleixandre, Plasma Sources Sci. Technol. 15, 42 (2005).

    Article  ADS  Google Scholar 

  26. B. van der Sijde and J. A. M. van der Mullen, J. Quant. Spectrosc. Radiat. Transfer 44, 39 (1990).

    Article  ADS  Google Scholar 

  27. N. U. Rehman, Z. Anjum, A. Masood, M. Farooq, I. Ahmad, and M. Zakaullah, Opt. Commun. 296, 72 (2013).

    Article  ADS  Google Scholar 

  28. H. van der Heijden, J. van der Mullen, J. Baier, and A Körber, J. Phys. B: At., Mol. Opt. Phys. 35, 3633 (2002).

    Article  ADS  Google Scholar 

  29. L. Taghizadeh, J. van der Mullen, A. Nikiforov, and C. Leys, Plasma Processes Polym. 12, 799 (2015).

    Article  Google Scholar 

  30. E. Iordanova, N. de Vries, M. Guillemier, and J. J. A. M. van der Mullen, J. Phys. D: Appl. Phys. 41, 015208 (2008).

  31. K. T. A. L. Burm, J. Plasma Phys. 71, 379 (2005).

    Article  ADS  Google Scholar 

  32. V. Georgieva, A. Bogaerts, and R. Gijbels, J. Appl. Phys. 94, 3748 (2003).

    Article  ADS  Google Scholar 

  33. S. K. Ahn, S. J. You, and H. Y. Chang, Appl. Phys. Lett. 89, 161506 (2006).

  34. S. Sharma, N. Sirse, M. M. Turner, and A. R. Ellingboe, Phys. Plasmas 25, 063501 (2018).

Download references

Funding

The authors gratefully acknowledge the support provided by Project of Natural Science Foundation of China (nos. 12165019, 11665021) and Project Science Foundation of Gansu Province (no. 20JR10RA078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Q. Yin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, G.Q., Wang, J.J. & Yuan, Q.H. The Discharge Characteristics of Capacitively Coupled Ar Plasma as the Change of Pressure. Plasma Phys. Rep. 49, 802–807 (2023). https://doi.org/10.1134/S1063780X23600135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23600135

Keywords:

Navigation