Log in

Computational Estimate of the DT-to-DD Neutron Yield Ratio for Plasma Focus Chambers

  • PLASMA DYNAMICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The paper presents a computational estimate of the DT-to-DD neutron yield ratio for a spherical plasma-focus chamber PF9. The computations were carried out by the MHD modelling using the beam–target mechanism for neutron production. The charging voltage of the capacitor bank was varied in the range from 15 to 25 kV, and the initial pressure of the working gas was varied in the range from 4 to 30 Torr. The computations showed that the ratio of the DT and DD neutron yields varies in a wide range from 2 to 120, while the ratio of the DT and DD reaction cross sections for the typical ion energies in the beam varies in the range from 95 to 122. An analysis of the computational results showed that the difference in the estimates of the neutron yield is due to the features in the ion energy distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. A. Sahlberg, J. Eriksson, S. Conroy, G. Ericsson, C. Hellesen, D. King, and JET Contributors, Nucl. Fusion 59, 126044 (2019).

  2. V. D. Ivanov, JETP Lett. 42, 331 (1985).

    ADS  Google Scholar 

  3. B. A. Trubnikov, JETP Lett. 42, 389 (1985).

    ADS  Google Scholar 

  4. S. F. Garanin and V. I. Mamyshev, Plasma Phys. Rep. 34, 639 (2008).

    Article  ADS  Google Scholar 

  5. S. F. Garanin, V. Yu. Dolinskii, V. I. Mamyshev, N. G. Makeev, and V. V. Maslov, Plasma Phys. Rep. 46, 978 (2020).

    Article  ADS  Google Scholar 

  6. S. F. Garanin and V. Yu. Dolinskii, Plasma Phys. Rep. 47, 814 (2021).

    Article  ADS  Google Scholar 

  7. D. Klir, A. V. Shishlov, V. A. Kokshenev, P. Kubes, K. Rezac, R. K. Cherdizov, J. Cikhardt, B. Cikhardtova, G. N. Dudkin, F. I. Fursov, T. Hyhlik, J. Kaufman, B. M. Kovalchuk, J. Krasa, J. Kravarik, et al., New J. Phys. 20, 053064 (2018).

  8. D. Klir, S. L. Jackson, A. V. Shishlov, V. A. Kokshenev, K. Rezac, A. R. Beresnyak, R. K. Cherdizov, J. Cikhardt, B. Cikhardtova, G. N. Dudkin, J. T. Engelbrecht, F. I. Fursov, J. Krasa, J. Kravarik, P. Kubes, et al., Matter Radiat. Extremes 5, 026401 (2020).

  9. R. C. Davidson and N. T. Gladd, Phys. Fluids 18, 1327 (1975).

    Article  ADS  Google Scholar 

  10. N. A. Krall and P. C. Liewer, Phys. Rev. A: At., Mol., Opt. Phys. 4, 2094 (1971).

    Article  ADS  Google Scholar 

  11. J. P. Goedbloed, A. I. Pyatak, and V. L. Sizonenko, Sov. Phys.–JETP 37, 1051 (1973).

    ADS  Google Scholar 

  12. P. V. Sasorov, Sov. J. Plasma Phys. 18, 143 (1992).

    Google Scholar 

  13. M. B. Chadwick, P. Obložinský, M. Herman, N. M. Greene, R. D. McKnight, D. L. Smith, P. G. Young, R. E. MacFarlane, G. M. Hale, S. C. Frankle, A. C. Kahler, T. Kawano, R. C. Little, D. G. Madland, P. Moller, et al., Nucl. Data Sheets 107, 2931 (2006).

    Article  ADS  Google Scholar 

  14. Y. V. Mikhailov, B. D. Lemeshko, and I. A. Prokuratov, Plasma Phys. Rep. 45, 334 (2019).

    Article  ADS  Google Scholar 

  15. G. R. Hogg, Report No. AAEC/E-279 (Australian Atomic Energy Commission, Atomic Energy Research Establishment, Lucas Heights, 1973).

  16. S. H. Saw and S. Lee, Int. J. Energy Res. 35, 81 (2011).

    Article  Google Scholar 

  17. Y. L. Bakshaev, V. A. Bryzgunov, V. V. Vikhrev, I. V. Volobuev, S. A. Danko, E. D. Kazakov, V. D. Korolev, D. Klir, A. D. Mironenko-Marenkov, V. G. Pimenov, E. A. Smirnova, and G. I. Ustroev, Plasma Phys. Rep. 40, 437 (2014).

    Article  ADS  Google Scholar 

  18. V. E. Ablesimov, Yu. N. Dolin, O. V. Pashko, and Z. S. Tsibikov, Plasma Phys. Rep. 36, 403 (2010).

    Article  ADS  Google Scholar 

  19. D. Klir, J. Kravarik, P. Kubes, K. Rezac, S. S. Anan’ev, Yu. L. Bakshaev, P. I. Blinov, A. S. Chernenko, E. D. Kazakov, V. D. Korolev, B. R. Meshcherov, G. I. Ustroev, L. Juha, J. Krasa, and A. Velyhan, Phys. Plasmas 15, 032701 (2008).

  20. P. Kubes, J. Kravarik, D. Klir, K. Rezac, M. Bohata, M. Sholz, M. Paduch, K. Tomaszewski, I. Ivanova-Stanik, L. Karpinski, and M. J. Sadowski, IEEE Trans. Plasma Sci. 37, 83 (2009).

    Article  ADS  Google Scholar 

  21. D. Klir, J. Kravarik, P. Kubes, K. Rezac, J. Cikhardt, E. Litseva, T. Hyhlik, S. S. Ananev, Yu. L. Bakshaev, V. A. Bryzgunov, A. S. Chernenko, Yu. G. Kalinin, E. D. Kazakov, V. D. Korolev, G. I. Ustroev, et al., Plasma Phys. Controlled Fusion 52, 065013 (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Dolinskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaganov, V.V., Garanin, S.F. & Dolinskii, V.Y. Computational Estimate of the DT-to-DD Neutron Yield Ratio for Plasma Focus Chambers. Plasma Phys. Rep. 49, 428–436 (2023). https://doi.org/10.1134/S1063780X23600081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X23600081

Keywords:

Navigation