Log in

Fractal Brownian Motion of Colloidal Particles in Plasma

  • DUSTY PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Experimental data on the motion of a single colloidal particle in a trap in the near-electrode layer of an RF-discharge plasma are analyzed. The experiment was conducted with three types of colloids: uncoated melamine-formaldehyde particles, melamine-formaldehyde particles with a thin copper coating, and Janus particles partially coated with iron. The colloids were exposed to a flat wide laser beam, allowing them to be visualized and their kinetic energy changed. To analyze the motion of particles, the functions of their dynamic entropy of the first intersection were constructed and the region of particle localization and the fractal dimension of their trajectories were found. The results obtained indicate a significant difference between colloids of different types, as well as the evolution of their motion with a change in kinetic energy. It is shown that the fractal dimension of the trajectories of all types of particles is fractional and decreases with an increase in their kinetic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. C. Bechinger, D. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, and G. Volpe, Rev. Mod. Phys. 88, 045006 (2016).

  2. S. Ramaswarmy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010).

    Article  ADS  Google Scholar 

  3. F. Schweitzer, Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences (Springer-Verlag, Berlin, 2007).

    MATH  Google Scholar 

  4. B. M. Friedrich and F. Jülicher, New J. Phys. 10, 123025 (2008).

  5. A. Sokolov, I. S. Aranson, J. O. Kessler, and R. E. Goldstein, Phys. Rev. Lett. 98, 158102 (2007).

  6. K. Drescher, R. E. Goldstein, N. Michel, M. Polin, and I. Tuval, Phys. Rev. Lett. 105, 168101 (2010).

  7. P. M. Kareiva and N. Shigesada, Oecologia 56, 234 (1983).

    Article  ADS  Google Scholar 

  8. H. L. Devereux, C. R. Twomey, M. S. Turner, and S. Thutupalli, J. R. Soc., Interface 18, 20210114 (2021).

  9. F. Bartumeus, M. G. E. Da Luz, G. M. Viswanathan, and J. Catalan, Ecology 86, 3078 (2005).

    Article  Google Scholar 

  10. N. E. Humphries, N. Queiroz, J. R. M. Dyer, N. G. Pade, M. K. Musyl, K. M. Schaefer, D. W. Fuller, J. M. Brunnschweiler, T. K. Doyle, J. D. R. Houghton, G. C. Hays, C. S. Jones, L. R. Noble, V. J. Wearmouth, E. J. Southall, et al., Nature 465, 1066 (2010).

    Article  ADS  Google Scholar 

  11. F. Kümmel, B. Hagen, R. Wittkowski, I. Buttinoni, R. Eichhorn, G. Volpe, H. Löwen, and C. Bechinger, Phys. Rev. Lett. 110, 198302 (2013).

  12. C. Kurzthaler, C. Devailly, J. Arlt, T. Franosch, W. C. Poon, V. A. Martinez, and A. T. Brown, Phys. Rev. Lett. 121, 078001 (2018).

  13. R. F. Ismagilov, A. Schwartz, N. Bowden, and G. M. Whitesides, Angew. Chem. 41, 652 (2002).

    Article  Google Scholar 

  14. J. R. Howse, R. A. L. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, and R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007).

  15. B. Liebchen and H. Löwen, Acc. Chem. Res. 51, 2982 (2018).

    Article  Google Scholar 

  16. C. A. Weber, T. Hanke, J. Deseigne, S. Léonard, O. Dauchot, E. Frey, and H. Chaté, Phys. Rev. Lett. 110, 208001 (2013).

  17. C. Scholz, M. Engel, and T. Pöschel, Nat. Commun. 9, 931 (2018).

    Article  ADS  Google Scholar 

  18. G. A. Patterson, P. I. Fierens, F. S. Jimka, P. König, A. Garcimartin, I. Zuriguel, L. A. Pugnaloni, and D. R. Parisi, Phys. Rev. Lett. 119, 248301 (2017).

  19. C. Scholz, S. Jahanshahi, A. Ldov, and H. Löwen, Nat. Commun. 9, 5156 (2018).

    Article  ADS  Google Scholar 

  20. J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, and P. M. Chaikin, Science 339, 936 (2013).

    Article  ADS  Google Scholar 

  21. L. Caprini, U. M. B. Marconi, and A. Puglisi, Phys. Rev. Lett. 124, 078001 (2020).

  22. C. B. Caporusso, P. Digregorio, D. Levis, L. F. Cugliandolo, and G. Gonnella, Phys. Rev. Lett. 125, 178004 (2020).

  23. A. Kaiser, H. H. Wensink, and H. Löwen, Phys. Rev. Lett. 108, 268307 (2012).

  24. M. Mijalkov and G. Volpe, Soft Matter 9, 6376 (2013).

    Article  ADS  Google Scholar 

  25. M. Grünwald, S. Tricard, G. M. Whitesides, and P. L. Geissler, Soft Matter 12, 1517 (2016).

    Article  ADS  Google Scholar 

  26. J. Hu, S. Zhou, Y. Sun, X. Fang, and L. Wu, Chem. Soc. Rev. 41, 4356 (2012).

    Article  Google Scholar 

  27. A. Walther and A. H. E. Müller, Chem. Rev. 113, 5194 (2013).

    Article  Google Scholar 

  28. H. Su, C.-A. Hurd Price, L. **g, Q. Tian, J. Liu, and K. Qian, Mater. Today Bio 4, 100033 (2019).

  29. X. G. Koss, E. A. Kononov, I. I. Lisina, M. M. Vasiliev, and O. F. Petrov, Molecules 27, 1614 (2022).

    Article  Google Scholar 

  30. O. F. Petrov, K. B. Statsenko, and M. M. Vasiliev, Sci. Rep. 12, 8618 (2022).

    Article  ADS  Google Scholar 

  31. X. G. Koss, O. F. Petrov, M. I. Myasnikov, K. B. Statsenko, and M. M. Vasiliev, J. Exp. Theor. Phys. 123, 98 (2016).

    Article  ADS  Google Scholar 

  32. X. G. Koss, O. F. Petrov, K. B. Statsenko, and M. M. Vasiliev, EPL 124, 45001 (2018).

    Article  Google Scholar 

  33. O. F. Petrov, R. E. Boltnev, and M. M. Vasiliev, Sci. Rep. 12, 6085 (2022).

    Article  Google Scholar 

  34. E. A. Lisin, E. A. Kononov, E. A. Sametov, M. M. Vasiliev, and O. F. Petrov, Molecules 26, 7535 (2021).

    Article  Google Scholar 

  35. H. Löwen, J. Chem. Phys. 152, 040901 (2020).

  36. H. Mukundarajan, T. C. Bardon, D. H. Kim, and M. Prakash, J. Exp. Biol. 219, 752 (2016).

    Article  Google Scholar 

  37. E. A. Lisin, O. S. Vaulina, I. I. Lisina, and O. F. Petrov, Phys. Chem. Chem. Phys. 23, 16248 (2021).

    Article  Google Scholar 

  38. V. Nosenko, F. Luoni, A. Kaouk, M. Rubin-Zuzic, and H. Thomas, Phys. Rev. Res. 2, 033226 (2020).

  39. K. Arkar, M. M. Vasiliev, O. F. Petrov, E. A. Kononov, and F. M. Trukhachev, Molecules 26, 561 (2021).

    Article  Google Scholar 

  40. S. Lloyd, IEEE Control Syst. Mag. 21 (4), 7 (2001).

    Google Scholar 

  41. A. Azua-Bustos and C. Vega-Martínez, Int. J. Astrobiol. 12, 314 (2013).

    Article  ADS  Google Scholar 

  42. P. Gaspard and X.-J. Wang, Phys. Rep. 235, 291 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  43. P. Allegrini, J. F. Douglas, and S. C. Glotzer, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 60, 5714 (1999).

    Google Scholar 

  44. microParticles GmbH, online shop. https://microparticles.de/. Cited July 25, 2022.

  45. E. A. Kononov, M. M. Vasiliev, E. V. Vasilieva, and O. F. Petrov, Nanomaterials 11, 2931 (2021).

    Article  Google Scholar 

  46. C. Schmidt and A. Piel, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 92, 043106 (2015).

  47. O. S. Vaulina, E. A. Lisin, A. V. Gavrikov, O. F. Petrov, and V. E. Fortov, J. Exp. Theor. Phys. 110, 662 (2010).

    Article  ADS  Google Scholar 

  48. Y. Feng, J. Goree, and B. Liu, Rev. Sci. Instrum. 82, 053707 (2011).

  49. C.-R. Du, V. Nosenko, H. M. Thomas, A. Muller, A. M. Lipaev, V. I. Molotkov, V. E. Fortov, and A. V. Ivlev, New J. Phys. 19, 073015 (2017).

  50. Ch. Dellago and H. A. Posch, Phys. A: Stat. Mech. Appl. 230, 364 (1996).

    Article  Google Scholar 

  51. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, CA, 1982).

    MATH  Google Scholar 

  52. G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823 (1930).

    Article  ADS  Google Scholar 

  53. V. E. Fortov, O. F. Petrov, O. S. Vaulina, and K. G. Koss, JETP Lett. 97, 322 (2013).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to E.A. Lisin for fruitful discussions.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (state assignment no. 075-01056-22-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Koss.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koss, K.G., Lisina, I.I., Vasiliev, M.M. et al. Fractal Brownian Motion of Colloidal Particles in Plasma. Plasma Phys. Rep. 49, 57–64 (2023). https://doi.org/10.1134/S1063780X22601705

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22601705

Keywords:

Navigation