Log in

Analysis of Solution of Damped Modified-KdV Equation on Dust-Ion-Acoustic Wave in Presence of Superthermal Electrons

  • DUSTY PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Nonlinear propagation of dust-ion-acoustic (DIA) waves in an unmagnetized collisional dusty plasma consisting of superthermal electrons, mobile ions and immobile negative dust particles have been investigated by employing the standard reductive perturbation technique. An analytical solution of the damped Korteweg–de Vries (KdV) equation is derived and the effects of superthermal electrons characterized by the parameter κ and dust-ion collision frequency \({{\nu }_{{{\text{id}}}}}\) are found to modify the properties of the DIA solitary waves. In particular, it has been found that the presence of the superthermal electrons increases the amplitude and also the width of the nonlinear DIA wave. The variation of the amplitude and the width of the DIA wave have been found to be dependent on time. A parametric study of the variation of the electrostatic potential, amplitude, and width of the solitary wave is presented in this investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCE

  1. P. K. Shukla and V. P Silin, Phys. Scr. 45, 508 (1992).

    Article  ADS  Google Scholar 

  2. A. Barkan, R. L. Merlino, and N. D’Angelo, Phys. Plasmas 2, 3563 (1995).

    Article  ADS  Google Scholar 

  3. Y. Nakamura, H. Bailung, and P. K. Shukla, Phys. Rev. Lett. 83, 1602 (1999).

    Article  ADS  Google Scholar 

  4. S. S. Duha and A. A. Mamun, Phys. Lett. A. 373, 1287 (2009).

    Article  ADS  Google Scholar 

  5. R. S. Tiwari and M. K. Mishra, Phys. Plasmas 13, 062112 (2006).

    Article  ADS  Google Scholar 

  6. H. R. Pakzad, R Javidan, and A. Rafiei, Astrophys. Space Sci. 353, 543 (2014).

    Article  ADS  Google Scholar 

  7. A. Paul, G. Mandal, A. A. Mamun, and M. R. Amin, IEEE Trans. Plasma Sci. 39, 1254 (2011).

    Article  ADS  Google Scholar 

  8. A. V. Volosevich and C. V. Meister, Contrib. Plasma Phys. 42, 61 (2002).

    Article  ADS  Google Scholar 

  9. T. K. Das, A. Saha, N. Pal, and P. Chatterjee, Phys. Plasmas 24, 073707 (2017).

    Article  ADS  Google Scholar 

  10. T. V. Losseva, S. I. Popel, A. P. Golub, and P. K. Shukla, Phys. Plasmas 16, 093704 (2009).

    Article  ADS  Google Scholar 

  11. W. M. Moslem and W. F. El-Taibany, Phys. Plasmas 12, 122309 (2005).

    Article  ADS  Google Scholar 

  12. S. Maitra and G. Banerjee, Phys. Plasmas 21, 113707 (2014).

    Article  ADS  Google Scholar 

  13. M. Sayyar, H. Zahed, S. J. Pestehe, and S. Sobhanian, Phys. Plasmas 23, 073704 (2016).

    Article  ADS  Google Scholar 

  14. K. Saeki, P. Michelsen, K. L. Pecseli, and J. J. Rasmussen, Phys. Rev. Lett. 42, 501 (1979).

    Article  ADS  Google Scholar 

  15. C. Hansen, A. B. Reimann, and J. Fajans, Phys. Plasmas 3, 1820 (1996).

    Article  ADS  Google Scholar 

  16. P. L. Colestock and L. K. Spentzouris, AIP Conf. Proc. 356, 109 (1996).

    Article  ADS  Google Scholar 

  17. H. Schamel, Phys. Rev. Lett. 79, 2811 (1997).

    Article  ADS  Google Scholar 

  18. H. Schamel and R. Fedele, Phys. Plasmas 7, 3421 (2000).

    Article  ADS  Google Scholar 

  19. R. Danielson, F. Anderegg, and C. F. Driscoll, Phys. Rev. Lett. 92, 245003 (2004).

    Article  ADS  Google Scholar 

  20. W. Bertsche, J. Fajans, and L. Friedland, Phys. Rev. Lett. 91, 265003 (2003).

    Article  ADS  Google Scholar 

  21. B. Sahu, Europhysics Letters: a Letters Journal Exploring the Frontiers of Physics 101, 55002 (2013).

  22. V. M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968).

    Article  ADS  Google Scholar 

  23. S. Chowdhury, L. Mandi, and P. Chatterjee, Phys. Plasmas 25, 042112 (2018).

    Article  ADS  Google Scholar 

  24. H. Schamel, J. Plasma Phys. 9, 377 (1973).

    Article  ADS  Google Scholar 

  25. H. Schamel, Plasma Phys. 14, 905 (1972).

    Article  ADS  Google Scholar 

  26. P. Chatterjee, R. Ali, and A. Saha, Z. Naturforsch. 73, 151 (2018).

  27. H. Washimin and T. Sarma, Phys. Rev. Lett. 17, 996 (1966).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Paul or G. Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, A., Mandal, G., Amin, M.R. et al. Analysis of Solution of Damped Modified-KdV Equation on Dust-Ion-Acoustic Wave in Presence of Superthermal Electrons. Plasma Phys. Rep. 46, 83–89 (2020). https://doi.org/10.1134/S1063780X20010158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20010158

Navigation