Log in

Development of Data Concentration Method and Its Implementation in a Radiation-Tolerant CMOS Application Specific Integrated Circuit

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The results of the concentration method development for the data coming from the detector integrated circuits, intended for the experimental facilities MPD and BM@N, are presented. Charged particle detectors at these installations are characterized by a high granularity and accuracy of the detecting equipment. That results in a large data volume and the need to transfer processed data at a gigabit rate. Therefore, ASIC of the data concentrator requires both a high integration and use of specific structure as well as circuit and layout to provide an increased radiation tolerance. A specific feature of the ASIC is its ability to operate in the actual radiation background of the experiments estimated by up to 100 kRad in terms of immunity to heavy charged particles. In order to approbate the method and solutions on improvement of the radiation tolerance, the design results of a prototype 65 nm CMOS ASIC for read-out the signals from two SAMPA front-end chips cards are described. ASIC is intended for data receipt, concentration and subsequent transmission at a rate of 2.56 Gbit/s over micro-coaxial cables of 1 m length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. Cheremukhina, S. Movchan, S. Vereschagin, and S. Zaporozhets, “Front-end electronics development for TPC detector in the MPD/NICA project,” J. Instrum. 12, C06031 (2017).

    Article  Google Scholar 

  2. S. Vereschagin, S. Movchan, and S. Zaporozhets, “Front-end electronics development for TPC/MPD detector of NICA project,” J. Instrum. 15, C09044 (2020).

    Article  Google Scholar 

  3. E. Chatzikyriakou, K. Morgan, and C. Kees de Groot, “Total ionizing dose hardened and mitigation strategies in deep submicrometer CMOS and beyond,” IEEE Trans. Electron Devices 65, 808–819 (2018).

    Article  ADS  Google Scholar 

  4. M. Krohn, B. Bentele, D. Christian, J. Cumalat, G. Deptuch, F. Fahim, J. Hoff, A. Shenai, and S. Wagner, “Radiation tolerance of 65 nm CMOS transistors,” J. Instrum. 10, C05009 (2015).

    Article  Google Scholar 

  5. M. Bucher, A. Nikolaou, A. Papadopoulou, N. Makris, L. Chevas, G. Borghello, H. Koch, and F. Faccio, “Total ionizing dose effects on analog performance of 65 nm bulk CMOS with enclosed-gate and standard layout,” in International Conference on Microelectronic Test Structures (Austin, 2018).

  6. P. Bonacini, R. Valerio, R. Avramidou, R. Ballabriga, F. Faccio, K. Kloukinas, and A. Marchioro, “Characterization of a commercial 65 nm CMOS technology for SLHC applications,” JINST 7, P01015 (2012).

  7. Adolfsson, J. et al. (ALICE Collab.), “SAMPA Chip: The new 32 channels ASIC for the ALICE TPC and MCH Upgrades,” JINST 12, C04008 (2017).

  8. A. Velure, and B. Sanches, SAMPA V3 Specifications rev. 0.1 (2017), https://indico.cern.ch/event/617831/attachments/1428015/2199874/SAMPA_V3_Specification.pdf.

  9. A. Widmer and P. Franaszek, “A DC-balanced, partitioned-block, 8B/10B transmission code,” IBM J. Res. Dev. 27, 440–451 (1983).

    Article  Google Scholar 

  10. S. Kulis, L. Jara Casas, D. Ceresa, S. Miryala, J. Christianses, R. Francisco, and D. Gnani, “Characterization of radiation effects in 65 nm digital circuits with the DRAD digital radiation test chip,” J. Instrum. 12, C02039–C02039 (2017).

    Article  Google Scholar 

  11. R. Lacoe, “Improving integrated circuit performance through the application of hardness-by-design methodology,” IEEE Trans. Nucl. Sci. 55, 1903–1925 (2008).

    Article  ADS  Google Scholar 

  12. D. Fleetwood, “Total ionizing dose effects in MOS and low-dose-rate-sensitive linear-bipolar devices,” IEEE Trans. Nucl. Sci. 60, 1706–1730 (2013).

    Article  ADS  Google Scholar 

  13. C. Claeys, E. Simoen, “Physics and modeling of radiation effects in advanced CMOS technology nodes,” in Simulation of Semiconductor Processes and Devices (Springer, 2004), pp. 181–190.

    Google Scholar 

  14. Camplani A. S. Shojaii, H. Shrimali, A. Stabile, and V. Liberali, “CMOS IC radiation hardening by design,” Electron. Energ. 27, 251–258 (2014).

    Google Scholar 

  15. L. Seixas, O. Goncalez, R. Souza, S. Finco, Vaz R., G. da Silva, and S. Gimenez, “Improving MOSFETs’ TID tolerance through diamond layout style,” IEEE Trans. Device Mater. Reliab. 17, 593–595 (2017).

    Article  Google Scholar 

  16. F. Faccio, S. Michelis, D. Cornale, A. Paccagnella, and S. Gerardin, “Radiation-induced short channel (RISCE) and narrow channel (RINCE) effects in 65 and 130 nm MOSFETs,” IEEE Trans. Nucl. Sci. 62, 2933–2940 (2015).

    Article  ADS  Google Scholar 

  17. M. Menouni, M. Barbero, F. Bompard, S. Bonacini, D. Fougeron, R. Gaglione, A. Pozanov, P. Valerio, and A. Wang, “1-Grad total dose evaluation of 65 nm CMOS technology for the HL-LHC upgrades,” J. Instrum. 10, C05009 (2015).

    Article  Google Scholar 

  18. M. Lee and H. Lee, “Dummy gate-assisted n-MOSFET layout for a radiation-tolerant integrated circuit,” IEEE Trans. Nucl. Sci. 60, 3084–3091 (2013).

    Article  ADS  Google Scholar 

  19. V. Díez-Acereda, S. Khemchandani, del J. Pino, and S. Mateos-Angulo, “RHBD techniques to mitigate SEU and SET in CMOS frequency synthesizers,” Electronics 8, 690 (2019).

    Article  Google Scholar 

  20. G. Maurice et al. (RD53 Collab.), The RD53A Integrated Circuit. CERN-RD53-PUB-17-001, Version 3 . 51 (2019).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-02-40093).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Atkin or V. Samsonov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atkin, E., Azarov, D., Normanov, D. et al. Development of Data Concentration Method and Its Implementation in a Radiation-Tolerant CMOS Application Specific Integrated Circuit. Phys. Part. Nuclei 52, 752–756 (2021). https://doi.org/10.1134/S1063779621040080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779621040080

Keywords:

Navigation