Log in

Mechanisms of Destruction of Superconducting Properties of High-Temperature Superconductors Cooled with Liquid Coolants under Input of AC

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Possible macroscopic mechanisms for the destruction of the superconducting properties of a high-temperature YBa2Cu3O7-based superconductor cooled with liquid helium or nitrogen under input of AC are analyzed. It is shown that these mechanisms can be both of thermal and thermoelectrodynamic nature, which is based on the interrelated change in the electromagnetic field induced inside the superconductor and its temperature. Before the emergence of unstable states, intense stable energy dissipation can be observed, which is not taken into account in the current theory of losses. These mechanisms lead to stable supercritical values of the introduced current and the electric field induced inside the superconductor before the onset of instability and, consequently, high permissible overheating. The results discussed expand the scope of practical use of high-temperature superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. V. R. Romanovskii, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez 43 (4), 45 (2020).

    Google Scholar 

  2. A. V. Krivykh and A. V. Polyakov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez 43 (3), 41 (2020).

    Google Scholar 

  3. Y. Hong, J. Zheng, Z. Huang, and J. Zhang, J. Supercond. Novel Magn. 35, 1049 (2022).

    Article  CAS  Google Scholar 

  4. M. Ohya, IEEE Trans. Appl. Supercond. 32, 4701004 (2022).

  5. Y. Wu, X. Li, R. A. Badcock, N. J. Long, N. Amemiya, J. Fang, and Z. Jiang, IEEE Trans. Appl. Supercond. 32, 4701505 (2022).

  6. V. A. Altov, N. A. Kulysov, and V. V. Sytchev, in Advances in Cryogenic Engineering, Ed. by K. D. Timmerhaus, R. P. Reed, and A. F. Clark (Plenum, New York, 1977), Vol. 22, p. 408.

    Google Scholar 

  7. V. S. Vysotsky, V. E. Sytnikov, V. V. Repnikov, E. A. Lobanov, N. V. Zmitrenko, and A. L. Rakhmanov, IEEE Trans. Appl. Supercond. 15, 1655 (2005).

    Article  ADS  Google Scholar 

  8. P. S. Swartz and C. P. Bean, J. Appl. Phys. 39, 4991 (1968).

    Article  ADS  Google Scholar 

  9. E. G. Brentari and R. Smith, Adv. Cryo. Eng. 10, 325 (1965).

    CAS  Google Scholar 

  10. K. H. Muller and C. Andrikids, Phys. Rev. B 49, 1294 (1994).

    Article  ADS  CAS  Google Scholar 

  11. M. Inoue, T. Kiss, D. Mitsui, et al., IEEE Trans. Appl. Supercond. 17, 3207 (2007).

    Article  ADS  CAS  Google Scholar 

  12. M. Polak, I. Hlasnik, and L. Krempasky, Cryogenics 13, 702 (1973).

    Article  ADS  CAS  Google Scholar 

  13. V. R. Romanovskii, Basic Macroscopic Principles of Applied Superconductivity (Taylor and Francis Group, CRC, Boca Raton, 2021).

Download references

Funding

The study was supported by the National Research Center Kurchatov Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. R. Romanovskii or M. N. Makarenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Shmatikov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanovskii, V.R., Makarenko, M.N. Mechanisms of Destruction of Superconducting Properties of High-Temperature Superconductors Cooled with Liquid Coolants under Input of AC. Phys. Atom. Nuclei 86 (Suppl 2), S253–S261 (2023). https://doi.org/10.1134/S1063778823140119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823140119

Keywords:

Navigation