Log in

Method of Neutron Yield Calculation in Inertial Electrostatic Confinement Systems

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

This paper describes a method for calculating the neutron yield for inertial electrostatic confinement systems that is based on the beam-target mechanism of neutron production. Specific features of inertial electrostatic confinement systems are addressed, and their consistent description and consideration for the relationship between the above features and the current and concentration and velocity of ions involved in the interaction allowed develo** an approach to describe neutron generation processes in such systems. Comparison of the calculation with experimental data shows satisfactory agreement; the deviation does not exceed 40%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Proceedings of the Intersectoral Conference on Portable Neutron Generators and Technologies Based on them (VNIIA, Moscow, 2003) [in Russian].

  2. Yu. N. Barmakov, E. P. Bogolyubov, and G. A. Smirnov, in Proceedings of the International Conference on Portable Neutron Generators and Technologies Based on them (VNIIA, Moscow, 2004), p. 14.

  3. N. V. Zav’yalov, V. V. Maslov, V. G. Rumyantsev, I. Yu. Drozdov, D. A. Ershov, D. S. Korkin, D. A. Molodtsev, V. I. Smerdov, A. P. Falin, and A. A. Yukhimchuk, Plasma Phys. Rep. 39, 243 (2013). https://doi.org/10.1134/S1063780X12120070

    Article  ADS  CAS  Google Scholar 

  4. Proceedings of Scientists from Nuclear Centers of Russia, Collection of Articles No. 5, Ed. by N. G. Makeev (RFYaTs-VNIIEF, Sarov, 1996), p. 279 [in Russian].

  5. V. Shvetsov, in Proceedings of the European Conference on Neutron Scattering, St. Petersburg, Russia, 2019, p. 38.

  6. M. I. Lomaev, B. A. Nechaev, V. N. Padalko, S. I. Kuznetsov, D. A. Sorokin, V. F. Tarasenko, and A. P. Yalovets, Tech. Phys. 57, 124 (2012).

    Article  CAS  Google Scholar 

  7. X. J. Jiao, J. M. Shaw, T. Wang, X. M. Wang, H. Tsia, P. Poth, I. Pomerantz, L. A. Labun, T. Toncian, M. C. Dowmer, and B. M. Hegelich, Matter Radiat. Extremes 2, 296 (2017). https://doi.org/10.1016/j.mre.2017.10.003

    Article  Google Scholar 

  8. R. L. Hirsch, J. Appl. Phys. 38 (11) (1967). https://doi.org/10.1063/1.1709162

  9. Tech. NSD-Fusion, Note NSD-188 No. 1, Vers. C 8-1-2010 (Univ. Zurich, CERN, 2010).

  10. www.nsd-fusion.com/Applications/.

  11. D. R. Knapp, Inertial Electrostatic Confinement; Small Scale Nuclear Fusion for Non-Energy Applications (ICTP-IAEA College on Adv. Plasma Phys., 2014).

  12. R. Meyer, Ph.D. Thesis (Univ. Missouri-Columbia, 2007).

  13. K. Yamauchi, K. Tomiyasu, M. Watanabe, A. Okino, and E. Hotta, in Proceedings of the 5th US-Japan Workshop on IEC (Univ. Wisconsin-Madison, Madison, WI, 2002).

  14. G. R. Piefer, Ph.D. Thesis UWFDM-1303 (Univ. of Wisconcsin-Madison, 2006).

  15. K. I. Kozlovsky, A. Yu. Kuznetsov, D. D. Ponomarev, D. R. Hasaia, A. S. Tsybin, and A. E. Shikanov, At. Energy 112, 299 (2012).

    Article  CAS  Google Scholar 

  16. J. Park, S. M. Stange, R. A. Nebel, and K. M. Subramanian, Report No. LALP-04-133 (LANL, Plasma Phys. Res. Highlights).

  17. P. J. Shrestha, Report D-IEC 006 (Univ. Collab. NPRE, U of IL Fusion Studies Labor., 2005).

  18. H. Momota and G. H. Miley, J. Fusion Energ., No. 28, 191 (2009). https://doi.org/10.1007/s10894-008-9173-y

  19. D. C. Barnes, in Proceedings of the US/Japan Workshop, 2014.

  20. R. W. Bussard, Fusion Technol. 19, 273 (1991).

    Article  ADS  CAS  Google Scholar 

  21. M. M. Basko, Physical Foundations of Inertial Thermonuclear Fusion, The School-Book (MIFI, Moscow, 2009) [in Russian].

    Google Scholar 

  22. R. Feldbacher, Nuclear Reaction Cross Section and Reactivity Parameter Library and Files (The AEP Barnbook DATLIB, 1987).

    Google Scholar 

  23. G. H. Miley and S. K. Murali, Inertial Electrostatic Confinement (IEC) Fusion Fundamentals and Applications (Springer, 2014).

    Book  Google Scholar 

  24. G. I. Kir’yanov, Fast Neutron Generators (Energoatomizdat, Moscow, 1990) [in Russian].

    Google Scholar 

  25. S. V. Syromukov, At. Energ. 118 (6), 329 (2015).

  26. K. Nanjo, K. Kashiwagi, T. Sekiguchi, W. Nghamdee, M. Watanabe, and E. Hotta, in Proceedings of the 16th US-Japan Workshop on Fusion Neutron Sources for Nuclear Assay and Alternate Applications, Madison, Wisconsin, 2014.

  27. M. K. Michalak, A. N. Fancher, G. L. Kulcinski, and J. F. Santarius, Fusion Sci. Technol. (2017). https://doi.org/10.1080/15361055.2017.1330609

    Book  Google Scholar 

  28. G. H. Miley, in Proceedings of the US-Japan IEC Workshop, Univ. Wisconsin-Madison, 2002.

  29. B. I. Moskalev, Hollow Cathode Discharge (Energiya, Moscow, 1969) [in Russian].

    Google Scholar 

  30. H. Osawa, K. Makino, Y. Kawahira, C. Aoki, and M. Ohnishi, in Proceedings of the 16th US-Japan Workshop on Fusion Neutron Sources for Nuclear Assay and Alternate Applications, Madison, Wisconsin, 2014.

  31. R. P. Ashley, G. I. Kulcinski, J. F. Santarius, Krupakar C. Murali, G. Piefer, and R. Radel, in Proceedings of the 14th Topical Meeting on the Technology of Fusion Energy UWFDM-1144 (Fusion Technol. Inst. Univ. Wisconsin-Madison, 2000).

  32. B. B. Cipiti, Ph.D. Thesis UWFDM-1226 (Univ. of Wisconsin-Madison, 2004).

  33. B. J. Eagle, J. F. Santarius, and G. L. Kulcinski, in Proceedings of the ANS 17th TOFE, 2006.

  34. M. Bakr, K. Masuda, and M. Yoshidab, Fusion Sci. Technol., 479 (2019). https://doi.org/10.1080/15361055.2019.1609821

  35. R. Bowden-Reid, J. Khachan, J. Wulfkuhler, and M. Tajmar, Phys. Plasmas 25, 112702 (2018). https://doi.org/10.1063/1.5053616

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Dulatov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Dedkov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokuratov, I.A., Lemeshko, B.D., Mikhailov, Y.V. et al. Method of Neutron Yield Calculation in Inertial Electrostatic Confinement Systems. Phys. Atom. Nuclei 86, 1607–1615 (2023). https://doi.org/10.1134/S1063778823070177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823070177

Keywords:

Navigation