Log in

Detection of New Particles—Possible Candidates for the Role of Dark Matter Particles in Collisions of Protons and Nuclei from Spectra of Soft Photons

  • ELEMENTARY PARTICLES AND FIELDS/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Within a thermodynamic model, an interpretation of transverse momentum spectra of soft photons in proton–proton collisions is proposed via taking into account the \(X\)17 boson of mass 17 MeV—a new particle, which is a possible candidate for the role of a dark matter particle. The masses of dark matter particles are determined on the basis of unification of two-dimensional quantum chromodynamics and two-dimensional quantum electrodynamics within the tube model. In addition, an interpretation of the detection of a boson with mass 38 MeV in the spectra of photons emitted in reactions of protons with carbon nuclei at the incident proton momentum of 5.5 GeV/\(c\) is proposed. The \(X\)38 boson mass of 38 MeV is close to the boson mass of 34 MeV obtained for the electromagnetic tube. This new particle was discovered in experiments performed recently in Dubna and aimed at studying the \(p+\textrm{C}\to 2\gamma+X\) reaction. It is proposed to treat \(X\)17 and \(X\)38 bosons as dark matter particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

REFERENCES

  1. E. Fermi, Prog. Theor. Phys. 5, 570 (1950).

    Article  ADS  Google Scholar 

  2. I. Ya. Pomeranchuk, Dokl. Akad. Nauk 78, 889 (1951).

    Google Scholar 

  3. L. D. Landau, in Collected Papers of L. D. Landau, Ed. by D. Ter Haar (Pergamon, Oxford, 1965), p. 74.

  4. V. M. Emelyanov, S. L. Timoshenko, and M. N. Strikhanov, Introduction to Relativistic Nuclear Physics (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  5. V. I. Goldansky, Yu. P. Nikitin, and I. L. Rosenthal, Kinematic Methods in High-Energy Physics (Nauka, Moscow, 1987; Routledge, London, 1989).

  6. A. T. D’yachenko and I. A. Mitropolsky, Phys. At. Nucl. 83, 558 (2020).

    Article  Google Scholar 

  7. A. T. D’yachenko and I. A. Mitropolsky, Bull. Russ. Acad. Sci.: Phys. 85, 554 (2021).

    Article  Google Scholar 

  8. A. T. D’yachenko, Phys. At Nucl. 83, 1597 (2020)

    Article  Google Scholar 

  9. A. T. D’yachenko and E. S. Gromova, J. Phys.: Conf. Ser. 2131, 022054 (2021).

    Google Scholar 

  10. A. T. D’yachenko, A. A. Verisokina, and M. A. Verisokina, Acta Phys. Polon. B Proc. Suppl. 14, 761 (2021).

  11. S. N. Gninenko, N. V. Krasnikov, and V. A. Matveev, Phys. Usp. 64, 1286 (2021).

    Article  ADS  Google Scholar 

  12. V. N. Lukash and E. V. Mikheeva, Phys. Usp. 50, 971 (2007).

    Article  ADS  Google Scholar 

  13. M. Battaglieri et al., ar**v: 1707.04591.

  14. C.-Y. Wong, J. High Energy Phys. 08, 165 (2020); ar**v: 2001.04864v1 [nucl-th].

  15. A. Belogianni, W. Beusch, T. J. Brodbeck, F. S. Dzheparov, B. R. French, P. Ganoti, J. B. Kinson, A. Kirk, V. Lenti, I. Minashvili, V. F. Perepelitsa, N. Russakovich, A. V. Singovsky, P. Sonderegger, M. Spyropoulou-Stassinaki, and O. Villalobos Baillie, Phys. Lett. B 548, 129 (2002).

    Article  ADS  Google Scholar 

  16. K. Abraamyan, C. Austin, M. Baznat, K. Gudima, M. Kozhin, S. Reznikov, and A. Sorin, EPJ Web Conf. 204, 08004 (2019); ar**v: 1208.3829.

  17. A T. D’yachenko, K. A. Gridnev, and W. Greiner, J. Phys. G: Nucl. Part. Phys. 40, 085101 (2013).

    Article  ADS  Google Scholar 

  18. A. T. D’yachenko and I. A. Mitropolsky, EPJ Web Conf. 204, 03018 (2019).

  19. A. T. D’yachenko and I. A. Mitropolsky, Phys. At. Nucl. 82, 1641 (2019).

    Article  Google Scholar 

  20. U. Heinz and P. Kolb, Nucl. Phys. A 702, 269 (2002).

    Article  ADS  Google Scholar 

  21. Y. Kanakubo, Y. Tachibana, and T. Hirano, Phys. Rev. C 101, 024912 (2020).

    Article  ADS  Google Scholar 

  22. C.-Y. Wong, Phys. Rev. C 81, 064903 (2010).

    Article  ADS  Google Scholar 

  23. A. J. Krasznahorkay, M. Csatlós, L. Csige, Z. Gácsi, J. Gulyás, M. Hunyadi, I. Kuti, B. M. Nyakó, L. Stuhl, J. Timár, T. G. Tornyi, Zs. Vajta, T. J. Ketel, and A. Krasznahorkay, Phys. Rev. Lett. 116, 042501 (2016); ar**v: 1504.01527.

  24. A. J. Krasznahorkay, M. Csatlmos, L. Csige, J. Gulyás, A. Krasznahorkay, B. M. Nyakó, I. Rajta, J. Timár, I. Vajda, and N. J. Sas, Phys. Rev. C 104, 044003 (2021); ar**v: 2104.10075 [nucl-ex].

  25. V. A. Abramovsky, E. V. Gedalin, E. G. Gurvich, and O. V. Kancheli, Inelastic Interactions at High Energies and Chromodynamics (Metsniereba, Tbilisi, 1986) [in Russian].

    Google Scholar 

  26. B. M. Barbashov and V. V. Nesterenko, Relativistic String Model in Hadron Physics (Energoatomizdat, Moscow, 1987) [in Russian].

    Google Scholar 

  27. C.-Y. Wong, Eur. Phys. J. A 58, 100 (2022); ar**v: 2010.13948 [hep-ph].

Download references

ACKNOWLEDGMENTS

I am grateful to V.V. Vechernin, M.B. Zhalov, and E.N. Bodunov for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. D’yachenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’yachenko, A.T. Detection of New Particles—Possible Candidates for the Role of Dark Matter Particles in Collisions of Protons and Nuclei from Spectra of Soft Photons. Phys. Atom. Nuclei 85, 1028–1033 (2022). https://doi.org/10.1134/S1063778823010179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823010179

Navigation