Log in

Estimates of the Flow Rate of Pure Condensate when Reactor Plant WWER-1200 is Brought to the Minimum Controlled Power Level after the Emergency Protection Triggering

  • SAFETY OF NUCLEAR REACTORS
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Activation of the emergency protection entails the injection of a boric acid solution into the reactor core to the standstill value, after which the control rods are raised, and then it is possible to obtain permission to start the reactor. The first stage of reaching the minimum controlled power level (MCL) is associated with feeding the pure condensate to the start-up interval at a high injection rate; the second stage is the mixing of the first circuit and then the injection of the pure condensate, but at a low rate. At the same time, the technical guidelines for safe operation indicate that the flow rate of pure condensate in the start-up interval should not exceed the flow rate of pure condensate to compensate for xenon poisoning by more than 10 t/h, and the rate of introducing the positive reactivity should not exceed 0.02 βeff/min. At the same time, it is not entirely clear how to estimate the flow rate of pure condensate in the start-up interval, since there is no equipment on the power unit for measuring the magnitude of xenon poisoning and the rate of reactivity input. This study answer the question of what is the permissible flow rate of pure condensate the operator can use in the start-up interval in the presence of xenon processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. A. A. Semenov, D. A. Solov’yev, and V. M. Chapayev, Attestation Passport of the Software Tool: Program mku01, Vers. 1.0, Technical Report ENIKO TSO (2007).

  2. Y. Shimazu, J. Nucl. Sci. Technol. 44, 155 (2007).

    Article  Google Scholar 

  3. V. K. Semenov and M. A. Vol’man, Vestn. Ivanov. Energet. Univ., No. 2, 15 (2015).

  4. N. A. Ryabov and A. A. Semenov, Izv. Vyssh. Uchebn. Zaved., Yad. Energet., No. 2, 66 (2006).

  5. S. P. Aver’yanova and P. Ye. Filimonov, At. Energy 107, 424 (2009).

    Article  Google Scholar 

  6. Y. Shimazu, J. Nucl. Sci. Technol. 45, 257 (2008).

    Article  Google Scholar 

  7. V. A. Tereshonok, V. S. Stepanov, V. P. Povarov, O. V. Lebedev, and V. V. Makeev, Therm. Eng. 50, 361 (2003).

    Google Scholar 

  8. Attestation Passport of the Software Tool PS No. 214 (2008).

  9. IR Program Version. WINDOWS. User Manual (2005).

  10. P. E. Filimonov, Sov. At. Energy 73, 693 (1992).

    Article  Google Scholar 

  11. P. B. Filimonov and S. P. Aver’yanova, At. Energy 80, 460 (1996).

  12. P. E. Filimonov, S. P. Aver’yanova, and M. P. Filimonova, At. Energy 84, 309 (1998).

  13. P. I. Filimonov, S. P. Aver’yanova, S. G. Oleynik, S. P. Klimov, and A. A. Depenchuk, At. Energy 85, 783 (1998).

  14. P. E. Filimonov, V. V. Mamichev, and S. P. Aver’yanova, At. Energy 84, 426 (1998).

  15. P. E. Filimonov and S. P. Aver’yanova, At. Energy 90, 243 (2001).

  16. S. P. Aver’yanova, A. I. Kovel, V. V. Mamichev, and P. E. Filimonov, At. Energy 105, 303 (2008).

  17. IR Program: Reactor Simulator, Version 1.2.2 for power unit No. 4 of the Kalinin NPP (2011).

  18. A. I. Al-Shamayleh, D. A. Solovyov, A. A. Semyenov, N. V. Shchukin, et al., Vopr. At. Nauki Tekh., Ser.: Fiz. Yad. Reakt., No. 1, 56 (2020).

  19. A. I. Al-Shamayleh, D. A. Solovyov, A. A. Semyonov, N. V. Shcukin, B. Djaroum, and H. A. Tanash, Int. J. Nucl. Govern. Econ. Ecol., No. 5, 37 (2021).

  20. A. I. Al-Shamayleh, D. A. Solovyov, A. A. Semyonov, N. V. Shcukin, B. Djaroum, H. A. Tanash, and I. A. Molev, J. Phys.: Conf. Ser. (2020).

  21. A. I. Al-Shamayleh, D. A. Solovyov, A. A. Semyenov, N. V. Shchukin, et al., Vopr. At. Nauki Tekh., Ser.: Fiz. Yad. Reakt., No. 1, 74 (2022).

  22. S. B. Vygovsky, in Proceedings of the 8th International Scientific and Technical Conference on Discussion of the Safety of NPPs with VVER, Podolsk, Russia, May 28–31, 2013 (GIDROPRESS, Podol’sk, 2013), p. 121.

  23. PROSTOR Software Package, Version 1, Attestation Passport No. 182 (Rostekhnadzor, Moscow, 2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Al-Shamayleh or D. A. Solovyov.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Shamayleh, A.I., Solovyov, D.A., Semenov, A.A. et al. Estimates of the Flow Rate of Pure Condensate when Reactor Plant WWER-1200 is Brought to the Minimum Controlled Power Level after the Emergency Protection Triggering. Phys. Atom. Nuclei 85 (Suppl 2), S1–S10 (2022). https://doi.org/10.1134/S1063778822140010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778822140010

Keywords:

Navigation