Log in

Development of a laser cleaning method for the first mirror surface of the charge exchange recombination spectroscopy diagnostics on ITER

  • Interaction of Plasmas, Particle Beams, and Radiation with Matter
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A set of optical diagnostics is expected for measuring the plasma characteristics in ITER. Optical elements located inside discharge chambers are exposed to an intense radiation load, sputtering due to collisions with energetic atoms formed in the charge transfer processes, and contamination due to recondensation of materials sputtered from different parts of the construction of the chamber. Removing the films of the sputtered materials from the mirrors with the aid of pulsed laser radiation is an efficient cleaning method enabling recovery of the optical properties of the mirrors. In this work, we studied the efficiency of removal of metal oxide films by pulsed radiation of a fiber laser. Optimization of the laser cleaning conditions was carried out on samples representing metal substrates polished with optical quality with deposition of films on them imitating the chemical composition and conditions expected in ITER. It is shown that, by a proper selection of modes of radiation exposure to the surface with a deposited film, it is feasible to restore the original high reflection characteristics of optical elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Tugarinov, I. L. Beigman, L. A. Vainstein, et al., Plasma Phys. 30, 147 (2004).

    Google Scholar 

  2. F. B. Rosmej, R. Stamm, and V. S. Lisitsa, Europhys. Lett. 73, 342 (2006).

    Article  ADS  Google Scholar 

  3. E. E. Mukhin, S. Yu. Tolstyakov, M. M. Kochergin, et al., Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 2, 59 (2010).[in Russian].

    Google Scholar 

  4. I. V. Moskalenko, Doctoral (Phys. Math.) Dissertation (2004) [in Russian].

    Google Scholar 

  5. F. W. Perkins, D. E. Post, N. A. Uckan, et al., Nucl. Fusion 39, 2080 (1999).

    Article  Google Scholar 

  6. K. Yu. Vukolov, M. I. Guseva, S. A. Evstigneev, et al., Plasma Devices Operat. 12, 193 (2004).

    Article  Google Scholar 

  7. M. Lipa, B. Schunke, K. Vukolov, et al., Fusion Eng. Des. A 81, 221 (2006).

    Article  Google Scholar 

  8. D. Rudakov, J. H. Yu, J. A. Boedo, E. M. Hollmann, et al., Rev. Sci. Instrum. 79, 10F303 (2008).

    Article  Google Scholar 

  9. D. Ivanova, M. Rubel, A. Widdowson, et al., Phys. Scr. 159, 014011 (2014).

    Article  Google Scholar 

  10. Y. Rong, C. Junling, C. Longwei, D. Rui, and Z. Dahuan, Plasma Sci. Technol. 16, 1158 (2014).

    Article  Google Scholar 

  11. L. Moser, R. Steiner, F. Leipold, R. Reichle, L. Marot, and E. Meyer, J. Nucl. Mater. 463, 940 (2015).

    Article  ADS  Google Scholar 

  12. C. H. Skinner, C. A. Gentile, and R. Doerner, Fusion Sci. Technol. 64, 1 (2013).

    Google Scholar 

  13. M. Wisse, L. Marot, and B. Eren, Fusion Eng. Des. 88, 388 (2013).

    Article  Google Scholar 

  14. M. Wisse, L. Marot, A. Widdowson, and M. Rubel, Fusion Eng. Des. 89, 122 (2014).

    Article  Google Scholar 

  15. W. M. Steen and J. Mazumder, Laser Material Processing (Springer, London, 2010).

    Book  Google Scholar 

  16. V. P. Veiko, E. A. Shakhno, V. N. Smirnov, A. M. Miaskovski, and S. S. Borovskih, Laser Part. Beams 24, 203 (2006).

    Article  ADS  Google Scholar 

  17. L. B. Begrambekov, A. A. Gordeev, and Ya. A. Sadovskii, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2, 419 (2008).

    Article  Google Scholar 

  18. A. P. Kuznetsov, A. S. Alexandrova, O. I. Buzhinskij, K. L. Gubskiy, T. V. Kazieva, A. V. Savchenkov, and S. N. Tugarinov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez 37 (4), 49 (2014).[in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Kuznetsov.

Additional information

Original Russian Text © A.P. Kuznetsov, O.I. Buzinskij, K.L. Gubsky, E.A. Nikitina, A.V. Savchenkov, B.A. Tarasov, S.N. Tugarinov, 2014, published in Yadernaya Fizika i Inzhiniring, 2014, Vol. 5, Nos. 11–12, pp. 1014–1023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, A.P., Buzinskij, O.I., Gubsky, K.L. et al. Development of a laser cleaning method for the first mirror surface of the charge exchange recombination spectroscopy diagnostics on ITER. Phys. Atom. Nuclei 78, 1677–1685 (2015). https://doi.org/10.1134/S1063778815140094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778815140094

Keywords

Navigation