Log in

Quasilinear Simulation of the Development of Weibel Turbulence in Anisotropic Collisionless Plasma

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A spectral quasilinear approach to the problem of TEM-Weibel instability in an anisotropic collisionless plasma is developed, which takes into account only the integral nonlinear interaction of modes through the joint variation of the spatially averaged particle velocity distribution induced by these modes. Within this approximation, a closed system of equations is obtained for the one- and two-dimensional evolution of spatial modes (harmonics) of the distribution function of particles and the electromagnetic field under conditions when the plasma anisotropy axis, the wave vector, and the magnetic field of the modes are orthogonal to each other. The numerical solution of this system of equations is compared with the available results of one-dimensional analytical quasilinear theory in the region of its applicability, as well as with the results of two-dimensional simulation by the particle-in-cell method, which also takes into account the direct four-wave interaction of modes. It is established that in the simplest cases of one-dimensional and axially symmetric two-dimensional problems for a bi-Maxwellian plasma, quasilinear phenomena play the leading role at a quite long stage of nonlinear development of turbulence. It is noted that at a later stage of decay of turbulence and in a more general formulation of the problem, in particular, in the presence of an external magnetic field, the direct nonlinear interaction of modes can manifest itself along with quasilinear phenomena. Based on the analysis carried out, the contribution of certain nonlinear effects to the evolution of the spatial spectrum of Weibel turbulence is revealed, and the properties of this turbulence are studied, including the self-similar character and qualitatively different stages of the dynamics of unstable modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Notes

  1. In many cases this relationship is slightly better satisfied by the wave number Kmax(t) corresponding to the maximum of the turbulence spectrum, rather than the above number 〈K〉 averaged over the mode spectrum bk, although these numbers are close enough.

REFERENCES

  1. A. B. Mikhailovskii, Theory of Plasma Instabilities (Atomizdat, Moscow, 1971) [in Russian].

    Google Scholar 

  2. N. Krall and A. W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill, New York, 1973).

    Book  Google Scholar 

  3. T. N. Kato, Phys. Plasmas 12, 080705 (2005).

  4. L. V. Borodachev and D. O. Kolomiets, J. Plasma Phys. 77, 277 (2010).

    Article  ADS  Google Scholar 

  5. C. Ruyer et al., Phys. Plasmas 22, 032102 (2015).

  6. M. Lazar et al., Front. Astron. Space Sci. 8, 77559 (2022).

    Article  Google Scholar 

  7. L. V. Borodachev, M. A. Garasev, D. O. Kolomiets, V. V. Kocharovsky, V. Yu. Martyanov, and A. A. Nechaev, Radiophys. Quantum Electron. 59, 991 (2016).

    Article  ADS  Google Scholar 

  8. D. V. Romanov et al., Phys. Rev. Lett. 93, 215004 (2004).

  9. W. Baumjohann and R. Treumann, Basic Space Plasma Physics (Imperial College Press, London, 2012).

    Book  Google Scholar 

  10. R. A. Treumann, Astron. Astrophys. Rev. 17, 409 (2009).

    Article  ADS  Google Scholar 

  11. A. Marcowith et al., Rep. Prog. Phys. 79, 046901 (2016).

  12. S. P. Gary, Theory of Space Plasma Microinstabilities (Cambridge Univ. Press, Cambridge, 1993).

    Book  Google Scholar 

  13. E. S. Weibel, Phys. Rev. Lett. 2, 83 (1959).

    Article  ADS  Google Scholar 

  14. M. Zhou et al., Proc. Natl. Acad. Sci. U. S. A. 119, e2119831119 (2022).

  15. B. D. Fried, Phys. Fluids 2, 337 (1959).

    Article  ADS  Google Scholar 

  16. G. Kalman, Phys. Fluids 11, 1797 (1968).

    Article  ADS  Google Scholar 

  17. R. L. Morse and C. W. Nielson, Phys. Fluids 14, 830 (1971).

    Article  ADS  Google Scholar 

  18. Vl. V. Kocharovsky, V. V. Kocharovsky, V. Yu. Martyanov, and S. V. Tarasov, Phys. Usp. 59, 1165 (2016).

    Article  ADS  Google Scholar 

  19. M. Lazar, R. Schlickeiser, and P. K. Shukla, Phys. Plasmas 13, 102107 (2006).

  20. A. Stockem, M. E. Dieckmann, and R. Schlickeiser, Plasma Phys. Control. Fusion 51, 075014 (2009).

  21. U. Schaefer-Rolffs, I. Lerche, and R. Schlickeiser, Phys. Plasmas 13, 012107 (2006).

  22. A. A. Kuznetsov et al., Plasma Phys. Rep. 48, 973 (2022).

    Article  ADS  Google Scholar 

  23. M. V. Medvedev et al., Astrophys. J. 618, L75 (2005).

    Article  ADS  Google Scholar 

  24. G. Chatterjee et al., Nat. Commun. 8, 15970 (2017).

    Article  ADS  Google Scholar 

  25. K. Y. Vagin and S. A. Uryupin, Plasma Phys. Rep. 40, 393 (2014).

    Article  ADS  Google Scholar 

  26. O. A. Pokhotelov and O. A. Amariutei, Ann. Geophys. 29, 1997 (2011).

    Article  ADS  Google Scholar 

  27. R. C. Davidson, Phys. Fluids 15, 317 (1972).

    Article  ADS  Google Scholar 

  28. M. A. Garasev and E. V. Derishev, Radiophys. Quantum Electron. 60, 931 (2017).

    Article  ADS  Google Scholar 

  29. M. A. Garasev and E. V. Derishev, Radiophys. Quantum Electron. 63, 909 (2021).

    Article  ADS  Google Scholar 

  30. T. D. Arber et al., Plasma Phys. Control. Fusion 57, 113001 (2015).

  31. A. A. Vedenov, Quasilinear Plasma Theory (Atomizdat, Moscow, 1962) [in Russian].

    Google Scholar 

  32. C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (CRC, Boca Raton, FL, 2018).

    Book  Google Scholar 

  33. A. A. Nechaev, A. A. Kuznetsov, and V. V. Kocharovsky, J. Plasma Phys. 89, 175890601 (2023). https://doi.org/10.1017/S0022377823001198

  34. A. A. Nechaev, M. A. Garasev, V. V. Kocharovsky, and Vl. V. Kocharovsky, Radiophys. Quantum Electron. 62, 830 (2019).

    Article  ADS  Google Scholar 

  35. V. M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968).

    Article  ADS  Google Scholar 

  36. M. Lazar, R. Schlickeiser, and S. Poedts, Phys. Plasmas 17, 062112 (2010).

  37. G. Livadiotis, Kappa Distributions: Theory and Applications in Plasmas (Elsevier, Amsterdam, 2017).

    Book  Google Scholar 

  38. G. Livadiotis, G. Nicolaou, and F. Allegrini, Astrophys. J. Suppl. Ser. 253, 16 (2021).

    Article  ADS  Google Scholar 

  39. V. Pierrard and M. Lazar, Sol. Phys. 267, 153 (2010).

    Article  ADS  Google Scholar 

  40. S. M. Shaaban et al., Astrophys. J. 918, 37 (2021).

    Article  ADS  Google Scholar 

  41. S. M. Shaaban et al., Mon. Not. R. Astron. Soc. 483, 5642 (2019).

    Article  ADS  Google Scholar 

  42. P. H. Yoon, Rev. Mod. Plasma Phys. 1, 4 (2017).

    Article  ADS  Google Scholar 

  43. M. E. Dieckmann et al., Plasma Phys. Control. Fusion 61, 085027 (2019).

  44. A. Stockem Novo et al., Phys. Plasmas 22, 092301 (2015).

Download references

ACKNOWLEDGMENTS

Numerical calculations were performed using the supercomputer resources of the Center for Collective Use of the Keldysh Institute of Applied Mathematics, Russian Academy of Sciences.

Funding

The calculations of the dynamics of Weibel modes within the framework of one-dimensional problem were supported by the Russian Science Foundation (project no. 19-72-10111). The calculation of the evolution of the spectrum in axially symmetric two-dimensional problem was supported by the Theoretical Physics and Mathematics Advancement Foundation “BASIS” (project no. 20-1-1-37-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kuznetsov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by I. Nikitin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, A.A., Nechaev, A.A., Garasev, M.A. et al. Quasilinear Simulation of the Development of Weibel Turbulence in Anisotropic Collisionless Plasma. J. Exp. Theor. Phys. 137, 966–985 (2023). https://doi.org/10.1134/S1063776123120099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123120099

Navigation