Log in

Computational–Experimental Study of the Liquid Drop Fragmentation Caused by an Air Shock Wave

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The fragmentation of a drop of liquid (water, alcohol, glycerin) under the action of an air shock wave with a pressure of 0.2 and 3.2 atmg is studied experimentally and theoretically. The experiments are carried out using an air shock tube, and the liquid drop diameter is approximately 0.6 and 2 mm. The process is studied using high-speed video recording. Dispersed liquid particles from ≈5 μm in size are detected, liquid particle size distributions are plotted, and the particle velocities are determined. The experimental results are compared with the results of computational–theoretical estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

REFERENCES

  1. A. A. Buzukov, Prikl. Mekh. Tekh. Fiz. 2, 154 (1963).

  2. B. M. Belen’kii and G. A. Evseev, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 2, 163 (1974).

    Google Scholar 

  3. V. M. Boiko, A. N. Papyrin, and S. V. Poplavskii, Prikl. Mekh. Tekh. Fiz. 2, 108 (1987).

  4. R. D. Enikeev, Polzunov. Vestn., No. 4, 64 (2006).

  5. V. M. Boiko and S. V. Poplavskii, in Modern Problems of Applies Mathematics and Mechanics: Theory, Experiment and Practice, Proceedings of the International Conference Dedicated to 90 Years from N. N. Yanenko Birthday (2011).

  6. K. Yu. Aref’ev, A. V. Voronetskii, and S. A. Suchkov, Izv. Vyssh. Uchebn. Zaved., Mashinostr., No. 10, 17 (2015).

  7. D. D. Joseph, J. Belanger, and G. S. Beavers, Int. J. Multiphase Flow 25, 1263 (1999).

    Article  Google Scholar 

  8. R. I. Nigmatulin, Dynamics of Multiphase Media (Nauka, Moscow, 1987; Hemisphere, Washington, 1991), Part 1.

  9. V. G. Levich, Physicochemical Hydrodynamics (Fizmatlit, Moscow, 1959) [in Russian].

    Google Scholar 

  10. S. Yu. Grigoryev, B. V. Lakatosh, M. S. Krovokorytov, et al., Phys. Rev. Appl. 10, 064009 (2018). https://doi.org/10.1103/PhysRevApplied.10.064009

  11. N. V. Nevmerzhitskii, V. A. Raevskii, E. A. Sotskov, E. D. Sen’kovskii, N. B. Davydov, E. V. Bodrov, S. V. Frolov, K. V. Anisiforov, A. B. Georgievskaya, E. V. Levkina, O. L. Krivonos, A. S. Kuchkareva, A. R. Gavrish, and B. I. Tkachenko, Combust. Explos., Shock Waves 54, 585 (2018).

    Article  Google Scholar 

  12. D. Sorenson, R. Malone, B. Frogget, C. Ciarcia, T. Tunnell, and R. Fleur, Proc. SPIE 2869, 206 (1997).

    Article  ADS  Google Scholar 

  13. S. A. Abakumov, O. L. Krivonos, N. V. Nevmerzhitskii, A. V. Rudnev, E. A. Sotskov, E. D. Sen’kovskii, L. V. Tochilina, and S. V. Frolov, RF Patent No. 139204 U1 (2014).

  14. N. V. Nevmerzhitskii, E. A. Sotskov, E. D. Sen’kovskii, et al., in Proceedings of the International Conference 11th Kharitonov Thematic Scientific Readings (2009).

  15. Physics of the Explosion, Ed. by L. P. Orlenko (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  16. O. I. Volchenko and E. E. Meshkov, Inventor’s Certificate No. 1531596 MPK F21K 5/08, Request No. 4287791 (1997).

  17. H. L. F. Helmholtz, Über Discontinuirlissh Flüssigkeits- Bewegungen (Monatsber. Konigl. Preus. Akad. Wiss, Berlin, 1868).

    Google Scholar 

  18. L. I. Sedov, Mechanics of Continuous Media (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  19. L. Prandtl and O. G. Tietjens, Fundamentals of Hydro- and Aeromechanics, Dover Books on Aeronautical Engineering (Dover, New York, 2011).

    Google Scholar 

  20. D. E. Grady and M. E. Kipp, Mech. Matter 4, 311 (1985).

    Article  Google Scholar 

  21. Destruction of Objects of Different Sizes during an Explosion, Ed. by A. G. Ivanov (RFYaTs-VNIIEF, Sarov, 2001) [in Russian].

  22. A. G. Ivanov, V. A. Raevskii, and O. S. Vorontsova, Fiz. Goreniya Vzryva 31, 96 (1995).

    Google Scholar 

  23. A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii, et al., Handbook of Physical Quantities, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC, Boca Raton, NY, 1996).

  24. F. M. Sultanov and A. L. Yarin, Prikl. Mekh. Tekh. Fiz. 5, 48 (1990).

  25. E. Villermaux, Ann. Rev. Fluid Mech. 39, 419 (2007).

    Article  ADS  Google Scholar 

  26. A. A. Antonnikova, N. V. Korovina, O. V. Kudryashova, and I. M. Vasenin, Polzun. Vestn., No. 1, 123 (2013).

Download references

Funding

The computational–theoretical analysis of experiments was carried out within the framework of the scientific program of the National Center for Physics and Mathematics (direction no. 3, Gas Dynamics and Physics of Explosion).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Georgievskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisiforov, K.V., Georgievskaya, A.B., Levkina, E.V. et al. Computational–Experimental Study of the Liquid Drop Fragmentation Caused by an Air Shock Wave. J. Exp. Theor. Phys. 137, 940–955 (2023). https://doi.org/10.1134/S1063776123120014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123120014

Navigation