Log in

Charge-Transfer Complexes of Linear and Ladder-Type Conjugated Polymers as Promising Organic Narrow-Gap Semiconductors

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Charge-transfer complexes (CTCs) of small π-conjugated organic molecules have been studied for a long time as organic semiconductors and conductors. However, the formation of such complexes between two π-conjugated macromolecules, namely, conjugated polymers has only recently been discovered. In this work, the formation of such CTCs is theoretically considered and their specific features in comparison with low-molecular CTCs are revealed. In particular, it is shown that the energy gap (optical gap) of the CTC of conjugated polymers can be significantly narrower and the charge transfer can be higher than those in their low-molecular analogs (even at the same energies of the highest occupied molecular orbital of a donor and the lowest unoccupied molecular orbital of an acceptor), which is explained by charge delocalization along a polymer chain. This finding is most pronounced in the case of ladder-type polymers, the charge delocalization in which has a quasi-two-dimensional character. Density functional theory calculations of CTC fragments of two ladder-type conjugated polymers confirm the theoretical assumptions, emphasizing the prospects of using such complexes in organic electronic devices. Based on the results obtained, we propose to create and study a new type of CTC using higher-dimension structures, e.g., two-dimensional sheets or three-dimensional conductive frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. S. Mulliken, J. Am. Chem. Soc. 74, 811 (1952).

    Article  Google Scholar 

  2. G. Saito and Y. Yoshida, Bull. Chem. Soc. Jpn. 80, 1 (2007).

    Article  Google Scholar 

  3. H. Jiang, P. Hu, J. Ye, K. K. Zhang, Y. Long, W. Hu, and C. Kloc, J. Mater. Chem. C 6, 1884 (2018).

    Article  Google Scholar 

  4. A. A. Bakulin, D. S. Martyanov, D. Y. Paraschuk, M. S. Pshenichnikov, and P. H. M. van Loosdrecht, J. Phys. Chem. B 112, 13730 (2008).

    Article  Google Scholar 

  5. A. Yu. Sosorev and D. Y. Paraschuk, Isr. J. Chem. 54, 650 (2014).

    Article  Google Scholar 

  6. O. D. Parashchuk, T. V. Laptinskaya, and D. Y. Paraschuk, Phys. Chem. Chem. Phys. 13, 3775 (2011).

    Article  Google Scholar 

  7. A. Yu. Sosorev and S. Zapunidi, J. Phys. Chem. B 117, 10913 (2013).

    Article  Google Scholar 

  8. A. Yu. Sosorev, O. D. Parashchuk, S. A. Zapunidi, G. S. Kashtanov, I. V. Golovnin, S. Kommanaboyina, I. F. Perepichka, and D. Yu. Paraschuk, Phys. Chem. Chem. Phys. 18, 4684 (2016).

    Article  Google Scholar 

  9. O. D. Parashchuk, S. Grigorian, E. E. Levin, V. V. Bruevich, K. Bukunov, I. V. Golovnin, T. Dittrich, K. A. Dembo, V. V. Volkov, and D. Y. Paraschuk, J. Phys. Chem. Lett. 4, 1298 (2013).

    Article  Google Scholar 

  10. D. T. Duong, C. Wang, E. Antono, M. F. Toney, and A. Salleo, Org. Electron. 14, 1330 (2013).

    Article  Google Scholar 

  11. K. Xu, H. Sun, T. P. Ruoko, et al., Nat. Mater. 19, 738 (2020).

    Article  ADS  Google Scholar 

  12. A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, and R. H. Friend, Science (Washington, DC, U. S.) 335, 1340 (2012).

    Article  ADS  Google Scholar 

  13. S. Haseena and M. K. Ravva, J. Electron. Mater. 50, 1621 (2021).

    Article  ADS  Google Scholar 

  14. A. Yu. Sosorev, D. Yu. Godovsky, and D. Yu. Paraschuk, Phys. Chem. Chem. Phys. 20, 3658 (2018).

    Article  Google Scholar 

  15. J. Lee, A. J. Kalin, T. Yuan, M. Al-Hashimi, and L. Fang, Chem. Sci. 8, 2503 (2017).

    Article  Google Scholar 

  16. A. Yu. Sosorev, Mater. Des. 192, 108730 (2020).

  17. A. Yu. Sosorev, Phys. Chem. Chem. Phys. 19, 25478 (2017).

    Article  Google Scholar 

  18. M. Yu. Lavrentiev, W. Barford, S. J. Martin, H. Daly, and R. J. Bursill, Phys. Rev. B 59, 9987 (1999).

    Article  ADS  Google Scholar 

  19. L. Zhu, Y. Yi, A. Fonari, N. S. Corbin, V. Coropceanu, and J.-L. Brédas, J. Phys. Chem. C 118, 14150 (2014).

    Article  Google Scholar 

  20. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, Jr., J. Comput. Chem. 14, 1347 (1993).

    Article  Google Scholar 

  21. M. S. Gordon and M. W. Schmidt, in Theory and Applications of Computational Chemistry: The First Forty Years, Ed. by C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria (Elsevier, Amsterdam, 2005), p. 1167.

    Google Scholar 

  22. A. Babel and A. Jenekhe, J. Am. Chem. Soc. 125, 13656 (2003).

    Article  Google Scholar 

  23. S. Fratini, M. Nikolka, A. Salleo, G. Schweicher, and H. Sirringhaus, Nat. Mater. 19, 491 (2020).

    Article  ADS  Google Scholar 

  24. T. Mueller and E. Malic, npj 2D Mater Appl. 2, 29 (2018).

  25. Y. Garcia-Basabe, A. R. Rocha, F. C. Vicentin, C. E. P. Villegas, R. Nascimento, E. C. Romani, E. C. de Oliveira, G. J. M. Fechine, S. Li, G. Eda, and D. G. Larrude, Phys. Chem. Chem. Phys. 19, 29954 (2017).

    Article  Google Scholar 

  26. H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, et al., Proc. Natl. Acad. Sci. U. S. A. 111, 6198 (2014).

    Article  ADS  Google Scholar 

  27. S.-H. Shin, H.-J. Noh, Y.-H. Kin, Y.-K. Im, J. Mahmood, and J.-B. Baek, Polym. Chem. 10, 4185 (2019).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Presidential Grants Council of the Russian Federation (presidential grant no. SP-6048.2021.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Sosorev.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosorev, A.Y. Charge-Transfer Complexes of Linear and Ladder-Type Conjugated Polymers as Promising Organic Narrow-Gap Semiconductors. J. Exp. Theor. Phys. 135, 100–106 (2022). https://doi.org/10.1134/S106377612207007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612207007X

Navigation