Log in

XAFS Spectroscopy Study of Microstructure and Electronic Structure of Heterosystems Containing Si/GeMn Quantum Dots

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Using X-ray absorption near edge structure spectroscopy, extended X-ray absorption fine structure spectroscopy, atomic force microscopy, and Rutherford backscattering spectroscopy, the features of the microstructure and elemental composition of Si/GeMn magnetic systems obtained by molecular beam epitaxy and containing quantum dots are studied. Intense mixing of Ge and Si atoms is found in all samples. The degree of mixing (diffusion) correlates with the conditions of synthesis of Si/GeMn samples. For these systems, direct contacts of germanium atoms with manganese atoms are characterized and the presence of interstitial manganese with tetrahedral coordination and substitution of manganese for germanium and silicon in the lattice sites is found. The presence of stoichiometric phases Ge8Mn11, Ge3Mn5 is not detected. The correlations of the Ge, Si, and Mn coordination numbers in the Ge environment are determined both with the Mn flux value (evaporator temperature) and with the temperature at which quantum dots are grown, as well as with other synthesis conditions. The manganese concentration in the samples is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. G. Busch, P. Junod, and P. Wachter, Phys. Lett. 12, 11 (1964).

    Article  ADS  Google Scholar 

  2. I. I. Lyapilin and I. M. Tsidil’kovskii, Sov. Phys. Usp. 28, 349 (1985).

    Article  ADS  Google Scholar 

  3. S. G. Ovchinnikov, Phase Trans. 36, 15 (1991).

    Article  Google Scholar 

  4. F. **u, Y. Wang, J. Kim, A. Hong, J. Tang, A. P. Jacob, J. Zou, and K. L. Wang, Nat. Mater. 9, 337 (2010).

    Article  ADS  Google Scholar 

  5. J. Kassim, C. Nolph, M. Jamet, P. Reinke, and J. Floro, J. Appl. Phys. 113, 073910 (2013).

    Article  ADS  Google Scholar 

  6. X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES, Ed. by D. C. Koninsberger and R. Prins (Wiley, New York, 1988).

    Google Scholar 

  7. D. I. Kochubei, Yu. A. Babanov, K. I. Zamaraev, L. N. Mazalov, et al., X-Ray Spectral Method for Studying the Structure of Amorphous Bodies: EHAPS Spectroscopy (Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  8. A. V. Kolobov, H. Oyanagi, K. Brunner, and K. Tanaka, Appl. Phys. Lett. 78, 451 (2001).

    Article  ADS  Google Scholar 

  9. A. V. Kolobov, H. Oyanagi, Sh. Wei, K. Brunner, G. Abstreiter, and K. Tanaka, Phys. Rev. B 66, 075319 (2002).

    Article  ADS  Google Scholar 

  10. A. V. Kolobov, H. Oyanagi, A. Frenkel, I. Robinson, J. Cross, Sh. Wei, K. Brunner, G. Abstreiter, Y. Maeda, A. Shklyaev, M. Ichikawa, S. Yamasaki, and K. Tanaka, Nucl. Instrum. Methods Phys. Res., Sect. B 199, 174 (2003).

    Google Scholar 

  11. F. Boscherini, G. Capellini, L. di Gaspare, F. Rosei, N. Motta, and S. Mobilio, Appl. Phys. Lett. 76, 682 (2000).

    Article  ADS  Google Scholar 

  12. A. Karatutlu, W. R. Little, A. V. Sapelkin, A. Dent, F. Mosselmans, G. Cibin, and R. Taylor, J. Phys.: Conf. Ser. 430, 012026 (2013).

    Google Scholar 

  13. Yu. Zhang, O. Ersoy, A. Karatutlu, W. Little, and A. Sapelkin, J. Synchrotr. Rad. 23, 253 (2016).

    Google Scholar 

  14. S. Erenburg, N. Bausk, L. Mazalov, A. Nikiforov, and A. Yakimov, J. Synchrotr. Rad. 10, 380 (2003).

    Google Scholar 

  15. S. B. Erenburg, N. V. Bausk, L. N. Mazalov, A. I. Nikiforov, and A. I. Yakimov, Phys. Scr. 115, 439 (2005).

    Article  Google Scholar 

  16. T. Nie, X. Kou, J. Tang, Y. Fan, S. Lee, Q. He, Li-Te Cgang, K. Murata, Y. Gen, and K. L. Wang, Nanoscale 9, 3086 (2017).

    Article  Google Scholar 

  17. M. Aouassa, I. Jadi, A. Bandyopadhyay, S. K. Kim, I. Karaman, and J. Y. Lee, Appl. Surf. Sci. 397, 40 (2017).

    Article  ADS  Google Scholar 

  18. I. T. Yoon, C. J. Park, S. W. Lee, T. W. Kang, D. W. Koh, and D. J. Fu, Solid State Electron. 52, 871 (2008).

    Article  ADS  Google Scholar 

  19. R. Gunnella, N. Pinto, L. Morresi, M. Abbas, and A. di Cicco, J. Non-Cryst. Sol. 354, 4193 (2008).

    Google Scholar 

  20. K. V. Klementiev, VIPER for Windows, freeware.

  21. N. Binsted, EXCURV 98: CCLRC Daresbury Laboratory Computer Program (1998).

Download references

ACKNOWLEDGMENTS

This work was supported in part by the Russian Foundation for Basic Research (grant nos. 16-02-00175_a (XAFS spectroscopy study), 16-02-00397_a (Synthesis of structures)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Erenburg.

Additional information

Translated by A. Zeigarnik

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erenburg, S.B., Trubina, S.V., Zvereva, V.A. et al. XAFS Spectroscopy Study of Microstructure and Electronic Structure of Heterosystems Containing Si/GeMn Quantum Dots. J. Exp. Theor. Phys. 128, 303–311 (2019). https://doi.org/10.1134/S1063776119020067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119020067

Navigation