Log in

Identifying Two-Dimensional Z2 Antiferromagnetic Topological Insulators

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We revisit the question of whether a two-dimensional topological insulator may arise in a commensurate Néel antiferromagnet, where staggered magnetization breaks the symmetry with respect to both elementary translation and time reversal, but retains their product as a symmetry. In contrast to the so-called Z2 topological insulators, an exhaustive characterization of antiferromagnetic topological phases with the help of topological invariants has been missing. We analyze a simple model of an antiferromagnetic topological insulator and chart its phase diagram, using a recently proposed criterion for centrosymmetric systems [13]. We then adapt two methods, originally designed for paramagnetic systems, and make antiferromagnetic topological phases manifest. The proposed methods apply far beyond the particular examples treated in this work, and admit straightforward generalization. We illustrate this by two examples of non-centrosymmetric systems, where no simple criteria have been known to identify topological phases. We also present, for some cases, an explicit construction of edge states in an antiferromagnetic topological insulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  2. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  3. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).

    Article  ADS  Google Scholar 

  4. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).

    Article  ADS  Google Scholar 

  5. C. Xu and J. E. Moore, Phys. Rev. B 73, 045322 (2006).

    Article  ADS  Google Scholar 

  6. C. Wu, B. A. Bernevig, and S.-C. Zhang, Phys. Rev. Lett. 96, 106401 (2006).

    Article  ADS  Google Scholar 

  7. B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).

    Article  ADS  Google Scholar 

  8. R. S. K. Mong, A. M. Essin, and J. E. Moore, Phys. Rev. B 81, 245209 (2010).

    Article  ADS  Google Scholar 

  9. C.-X. Liu, ar**v:1304.6455 (2013).

    Google Scholar 

  10. R.-X. Zhang and C.-X. Liu, Phys. Rev. B 91, 115317 (2015).

    Article  ADS  Google Scholar 

  11. C.-X. Liu, R.-X. Zhang, and B. K. van Leeuwen, Phys. Rev. B 90, 085304 (2014).

    Article  ADS  Google Scholar 

  12. C. Fang and L. Fu, Phys. Rev. B 91, 161105 (2015).

    Article  ADS  Google Scholar 

  13. C. Fang, M. J. Gilbert, and B. A. Bernevig, Phys. Rev. B 88, 085406 (2013).

    Article  ADS  Google Scholar 

  14. L. Fu, Phys. Rev. Lett. 106, 106802 (2011).

    Article  ADS  Google Scholar 

  15. M. Kargarian and G. A. Fiete, Phys. Rev. Lett. 110, 156403 (2013).

    Article  ADS  Google Scholar 

  16. J. Liu, W. Duan, and L. Fu, Phys. Rev. B 88, 241303 (2013).

    Article  ADS  Google Scholar 

  17. M. Serbyn and L. Fu, Phys. Rev. B 90, 035402 (2014).

    Article  ADS  Google Scholar 

  18. P. Jadaun, D. **ao, Q. Niu, and S. K. Banerjee, Phys. Rev. B 88, 085110 (2013).

    Article  ADS  Google Scholar 

  19. L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).

    Article  ADS  Google Scholar 

  20. A. A. Soluyanov and D. Vanderbilt, Phys. Rev. B 85, 115415 (2012).

    Article  ADS  Google Scholar 

  21. R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).

    Article  ADS  Google Scholar 

  22. R. Yu et al., Phys. Rev. B 84, 075119 (2011).

    Article  ADS  Google Scholar 

  23. A. A. Soluyanov and D. Vanderbilt, Phys. Rev. B 83, 235401 (2011).

    Article  ADS  Google Scholar 

  24. N. I. Kulikov and V. V. Tugushev, Phys. Usp. 27, 954 (1984).

    Article  ADS  Google Scholar 

  25. R. Ramazashvili, Phys. Rev. Lett. 101, 137202 (2008).

    Article  ADS  Google Scholar 

  26. R. Ramazashvili, Phys. Rev. B 79, 184432 (2009).

    Article  ADS  Google Scholar 

  27. H. Guo, S. Feng and S.-Q. Shen, Phys. Rev. B 83, 045114 (2011).

    Article  ADS  Google Scholar 

  28. M. Fruchart, D. Carpentier, and K. Gawedzki, Europhys. Lett. 106, 60002 (2014).

    Article  ADS  Google Scholar 

  29. L. Fu and C. L. Kane, Phys. Rev. B 74, 195312 (2006).

    Article  ADS  Google Scholar 

  30. M. Konig et al., J. Phys. Soc. Jpn. 77, 031007 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ramazashvili.

Additional information

Published in Russian in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 153, No. 1, pp. 108–126.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bègue, F., Pujol, P. & Ramazashvili, R. Identifying Two-Dimensional Z2 Antiferromagnetic Topological Insulators. J. Exp. Theor. Phys. 126, 90–105 (2018). https://doi.org/10.1134/S1063776118010028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118010028

Navigation