Log in

Role of structure imperfection in the formation of the magnetotransport properties of rare-earth manganites with a perovskite structure

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The structure, the structure imperfection, and the magnetoresistance, magnetotransport, and microstructure properties of rare-earth perovskite La0.3Ln0.3Sr0.3Mn1.1O3–δ manganites are studied by X-ray diffraction, thermogravimetry, electrical resistivity measurement, magnetic, 55Mn NMR, magnetoresistance measurement, and scanning electron microscopy. It is found that the structure imperfection increases, and the symmetry of a rhombohedrally distorted Rc perovskite structure changes into its pseudocubic type during isovalent substitution for Ln = La3+, Pr3+, Nd3+, Sm3+, or Eu3+ when the ionic radius of an A cation decreases. Defect molar formulas are determined for a real perovskite structure, which contains anion and cation vacancies. The decrease in the temperatures of the metal–semiconductor (T ms) and ferromagnet–paramagnet (T C) phase transitions and the increase in electrical resistivity ρ and activation energy E a with increasing serial number of Ln are caused by an increase in the concentration of vacancy point defects, which weaken the double exchange 3d 4(Mn3+)–2p 6(O2–)–3d 3(Mn4+)–V (a)–3d 4(Mn3+). The crystal structure of the compositions with Ln = La contains nanostructured planar clusters, which induce an anomalous magnetic hysteresis at T = 77 K. Broad and asymmetric 55Mn NMR spectra support the high-frequency electronic double exchange Mn3+(3d 4) ↔ O2–(2p 6) ↔ Mn4+(3d 3) and indicate a heterogeneous surrounding of manganese by other ions and vacancies. A correlation is revealed between the tunneling magnetoresistance effect and the crystallite size. A composition–structure imperfection–property experimental phase diagram is plotted. This diagram supports the conclusion about a strong influence of structure imperfection on the formation of the magnetic, magnetotransport, and magnetoresistance properties of rare-earth perovskite manganites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Izyumov, and E. Z. Kurmaev, Phys. Usp. 51, 1307 (2008).

    Article  Google Scholar 

  2. M. T. Varshavskii, V. P. Pashchenko, A. N. Men’, et al., Structure Defectivity and Physicochemical Prooperties of Ferrospinels (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  3. A. V. Pashchenko, V. P. Pashchenko, V. K. Prokopenko, et al., Acta Mater. 70, 218 (2014).

    Article  Google Scholar 

  4. A. V. Pashchenko, V. P. Pashchenko, V. K. Prokopenko, et al., J. Magn. Magn. Mater. 416, 457 (2016).

    Article  ADS  Google Scholar 

  5. E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).

    Article  ADS  Google Scholar 

  6. E. L. Nagaev, Phys. Rep. 346, 387 (2001).

    Article  ADS  Google Scholar 

  7. M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).

    Article  ADS  Google Scholar 

  8. V. P. Pashchenko, N. I. Nosanov, and A. A. Shemyakov, US Patent No. 45153, Bull. No. 9 (2005).

    Google Scholar 

  9. S. Khizroev, Y. Hijazi, R. Chomko, et al., Appl. Phys. Lett. 86, 042502 (2005).

    Article  ADS  Google Scholar 

  10. F. Yang, L. Méchin, J.-M. Routoure, et al., J. Appl. Phys. 99, 024903 (2006).

    Article  ADS  Google Scholar 

  11. Yu. A. Izyumov and Yu. N. Skryabin, Phys. Usp. 44, 109 (2001).

    Article  ADS  Google Scholar 

  12. J. M. D. Coey, M. Viret, and S. von Molnar, Adv. Phys. 48, 167 (1999).

    Article  ADS  Google Scholar 

  13. J.-H. Park, E. Vescovo, H.-J. Kim, et al., Phys. Rev. Lett. 81, 1953 (1998).

    Article  ADS  Google Scholar 

  14. J. P. Zhou, J. T. McDevitt, J. S. Zhou, et al., Appl. Phys. Lett. 75, 8 (1999).

    Google Scholar 

  15. N. V. Khiem, L. V. Bau, L. H. Son, et al., J. Magn. Magn. Mater. 262, 490 (2003).

    Article  ADS  Google Scholar 

  16. C. Martin, A. Maignan, M. Hervieu, et al., Phys. Rev. B 60, 12191 (1999).

    Article  ADS  Google Scholar 

  17. I. O. Troyanchuk, N. V. Samsonenko, N. V. Kasper, et al., Phys. Solid State A 160, 195 (1997).

    Article  ADS  Google Scholar 

  18. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  ADS  Google Scholar 

  19. A. V. Pashchenko, V. P. Pashchenko, Yu. F. Revenko, et al., Metallofiz. Noveish. Tekhnol. 32, 487 (2010).

    Google Scholar 

  20. A. V. Pashchenko, V. P. Pashchenko, V. K. Prokopenko, A. G. Sil’cheva, Yu. F. Revenko, A. A. Shemyakov, N. G. Kisel’, V. P. Komarov, V. Ya. Sycheva, S. V. Gorban’, and V. G. Pogrebnyak, Phys. Solid State 54, 767 (2012).

    Article  ADS  Google Scholar 

  21. Z. A. Samoilenko, N. N. Ivakhnenko, A. V. Pashchenko, V. P. Pashchenko, S. Yu. Prilipko, Yu. F. Revenko, and N. G. Kisel’, Inorg. Mater. 47, 1019 (2011).

    Article  Google Scholar 

  22. A. V. Pashchenko, V. P. Pashchenko, Yu. F. Revenko, et al., J. Magn. Magn. Mater. 369, 122 (2014).

    Article  ADS  Google Scholar 

  23. V. A. Turchenko, V. P. Pashchenko, V. K. Prokopenko, et al., Poroshk. Metall., Nos. 9–10, 35 (2006).

    Google Scholar 

  24. A. F. Cotton and G. Wilkinson, Advanced Inorganic Chemistry (Wiley, New York, 1980).

    Google Scholar 

  25. Chi Eun-Ok, Kwon Young-Uk, and Hwi Hur Nam, Bull. Korean Chem. Soc. 21, 259 (2000).

    Google Scholar 

  26. A. Fert, Rev. Mod. Phys. 80, 1517 (2008).

    Article  ADS  Google Scholar 

  27. J. S. Huebner and M. Sato, Am. Mineralogist 55, 934 (1970).

    Google Scholar 

  28. A. V. Pashchenko, V. P. Pashchenko, A. A. Shemyakov, N. G. Kisel’, V. K. Prokopenko, Yu. F. Revenko, A. G. Sil’cheva, V. P. Dyakonov, and H. Szymczak, Phys. Solid State 50, 1308 (2008).

    Article  ADS  Google Scholar 

  29. A. V. Pashchenko, A. A. Shemyakov, V. P. Pashchenko, V. A. Turchenko, V. K. Prokopenko, Yu. F. Revenko, Yu. V. Medvedev, B. M. Efros, and G. G. Levchenko, Phys. Solid State 51, 1193 (2009).

    Article  ADS  Google Scholar 

  30. A. V. Pashchenko, V. P. Pashchenko, A. G. Sil’cheva, V. K. Prokopenko, A. A. Shemyakov, Yu. F. Revenko, V. P. Komarov, and S. V. Gorban’, Phys. Solid State 53, 309 (2011).

    Article  ADS  Google Scholar 

  31. V. S. Urusov, Theoretical Crystal Chemistry (Mosk. Gos. Univ., Moscow, 1987) [in Russian].

    Google Scholar 

  32. A. V. Pashchenko, V. P. Pashchenko, V. K. Prokopenko, Yu. F. Revenko, A. S. Mazur, V. A. Turchenko, V. Ya. Sycheva, V. V. Burkhovetskii, A. G. Sil’cheva, and G. G. Levchenko, Phys. Solid State 55, 486 (2013).

    Article  ADS  Google Scholar 

  33. J. Hejtmánek, E. Šantavá, K. Kniížek, et al., Phys. Rev. B 82, 165107 (2010).

    Article  ADS  Google Scholar 

  34. D. S. McClure, and Z. Kiss, J. Chem. Phys. 39, 3251 (1963).

    Article  ADS  Google Scholar 

  35. N. F. Mott, Adv. Phys. 50, 865 (2001).

    Article  ADS  Google Scholar 

  36. V. N. Krivoruchko, J. Low Temp. Phys. 40, 586 (2014).

    Article  Google Scholar 

  37. K. Takanashi, H. Kurokawa, and H. Fujimori, Appl. Phys. Lett. 63, 1585 (1993).

    Article  ADS  Google Scholar 

  38. V. V. Dobrovitskii, A. K. Zvezdin, and A. F. Popkov, Phys. Usp. 39, 407 (1996).

    Article  ADS  Google Scholar 

  39. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).

    Article  ADS  Google Scholar 

  40. A. I. Mitsek and V. N. Pushkar, Real Crystals with Magnetic Order (Naukova Dumka, Kiev, 1978) [in Russian].

    Google Scholar 

  41. K. P. Belov, Phys. Usp. 42, 711 (1999).

    Article  ADS  Google Scholar 

  42. V. T. Dovgii, A. I. Linnik, V. P. Pashchenko, V. N. Derkachenko, V. K. Prokopenko, V. A. Turchenko, N. V. Davydeiko, V. Ya. Sycheva, V. P. Dyakonov, A. V. Klimov and H. Szymczak, J. Low Temp. Phys. 29, 285 (2003).

    Article  Google Scholar 

  43. S. V. Vonsovskii, Magnetism (Wiley, New York, 1971).

    Google Scholar 

  44. H. Ohldag, A. Scholl, F. Nolting, et al., Phys. Rev. Lett. 91, 0172031 (2003).

    Article  Google Scholar 

  45. V. P. Pashchenko, A. A. Shemyakov, M. M. Savosta, S. I. Khartsev, V. N. Derkachenko, V. K. Prokopenko, V. A. Turchenko, A. V. Pashchenko, V. P. Dyakonov, Yu. Buhanzev and H. Szymczak, J. Low Temp. Phys. 29, 910 (2003).

    Article  Google Scholar 

  46. J. Goodenough, Magnetism and the Chemical Bound (Wiley Interscience, New York, 1963).

    Google Scholar 

  47. K. A. Zvezdin, Phys. Solid State 42, 120 (2000).

    Article  ADS  Google Scholar 

  48. A. V. Pashchenko, V. P. Pashchenko, V. K. Prokopenko, Yu. F. Revenko, N. G. Kisel, V. I. Kamenev, A. G. Sil’cheva, N. A. Ledenev, V. V. Burkhovetskii, and G. G. Levchenko, Phys. Solid State 56, 955 (2014).

    Article  ADS  Google Scholar 

  49. A. O. Sboychakov, A. L. Rakhmanov, K. I. Kugel, et al., J. Magn. Magn. Mater. 258–259, 296 (2003).

    Article  Google Scholar 

  50. V. P. Pashchenko, A. A. Shemyakov, A. V. Pashchenko, L. T. Tsymbal, G. K. Kakazei, V. P. Dyakonov, H. Szymczak, J. A. M. Santos and J. B. Sousa, J. Low Temp. Phys. 30, 299 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pashchenko.

Additional information

Original Russian Text © A.V. Pashchenko, V.P. Pashchenko, V.K. Prokopenko, V.A. Turchenko, Yu.F. Revenko, A.S. Mazur, V.Ya. Sycheva, N.A. Liedienov, V.G. Pitsyuga, G.G. Levchenko, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 151, No. 1, pp. 116–131.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashchenko, A.V., Pashchenko, V.P., Prokopenko, V.K. et al. Role of structure imperfection in the formation of the magnetotransport properties of rare-earth manganites with a perovskite structure. J. Exp. Theor. Phys. 124, 100–113 (2017). https://doi.org/10.1134/S1063776116150127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116150127

Navigation