Log in

Adaptive X-Ray Optical Elements Based on Bending Piezoactuators: Possibilities and Prospects of Practical Application

  • REVIEWS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The possibilities of a new class of adaptive X-ray optical elements based on bending piezoelectric actuators for practical implementation of time-resolved experiments using X rays and synchrotron radiation—fast high-resolution X-ray diffractometry and fast X-ray absorption spectroscopy—are described. Examples of studies and results obtained using the proposed elements and the corresponding techniques are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

REFERENCES

  1. D. K. Bowen and B. K. Tanner, High-Resolution X-Ray Diffractometry and Topography (Taylor and Francis, London, 1998).

    Book  Google Scholar 

  2. U. Pietsch, V. Holy, and T. Baumbach, High-Resolution X-Ray Scattering: From Thin Films to Lateral Nanostructures (Springer, New York, 2004).

    Book  Google Scholar 

  3. D. V. Roshchupkin, D. V. Irzhak, R. Tucoulou, et al., J. Appl. Phys. 94 (10), 6692 (2003). https://doi.org/10.1063/1.1619199

    Article  ADS  Google Scholar 

  4. E. Zolotoyabko and J. P. Quintana, Rev. Sci. Instrum. 75 (3), 699 (2004). https://doi.org/10.1063/1.1645652

    Article  ADS  Google Scholar 

  5. A. R. Mkrtchyan, M. A. Navasardian, R. G. Gabrielyan, et al., Solid State Commun. 59, 147 (1986). https://doi.org/10.1016/0038-1098(86)90197-3

    Article  ADS  Google Scholar 

  6. M. V. Koval’chuk, A. V. Targonskii, A. E. Blagov, et al., Crystallogr. Rep. 56 (5), 828 (2011). https://doi.org/10.1134/S1063774511050130

    Article  ADS  Google Scholar 

  7. A. E. Blagov, P. A. Prosekov, A. V. Targonskii, et al., Crystallogr. Rep. 60 (2), 167 (2015). https://doi.org/10.1134/S1063774515020054

    Article  ADS  Google Scholar 

  8. A. E. Blagov, Yu. V. Pisarevskii, P. A. Prosekov, et al., Crystallogr. Rep. 62 (6), 831 (2017). https://doi.org/10.1134/S1063774517060037

    Article  ADS  Google Scholar 

  9. G. Matsunami, A. Kawamata, H. Hosaka, and T. Morita, Sens. Actuators, A 144, 337 (2008). https://doi.org/10.1016/j.sna.2008.02.006

    Article  Google Scholar 

  10. F. Filhol, E. Defay, C. Divoux, et al., Sens. Actuators, A 123–124, 483 (2005). https://doi.org/10.1016/j.sna.2005.04.029

    Article  Google Scholar 

  11. J. H. Yoo, J. I. Hong, and W. Cao, Sens. Actuators 79, 8 (2000). https://doi.org/10.1016/S0924-4247(99)00249-6

    Article  Google Scholar 

  12. M. V. Koval’chuk, Doctoral Dissertation in Physics and Mathematics (Institute of Crystallography, Russian Academy of Sciences, Moscow, 1987).

  13. G. L. Miller, R. A. Boie, P. L. Cowan, et al., Rev. Sci. Instrum. 50 (9), 1062 (1979). https://doi.org/10.1063/1.1136010

    Article  ADS  Google Scholar 

  14. M. D. Bryant and R. F. Keltie, Sens. Actuators 9 (2), 95 (1986). https://doi.org/10.1016/0250-6874(86)80011-7

    Article  Google Scholar 

  15. M. D. Bryant, Sens. Actuators 9 (2), 105 (1986). https://doi.org/10.1016/0250-6874(86)80012-9

    Article  Google Scholar 

  16. O. Nishikawa, Tomitori, and A. Minakuchi, Surf. Sci. 181, 210 (1987). https://doi.org/10.1016/0039-6028(87)90160-9

    Article  ADS  Google Scholar 

  17. A. Krolzig, G. Materlik, and J. Zegenhagen, Nucl. Instrum. Methods Phys. Res. A 219 (2), 430 (1984).

    Article  Google Scholar 

  18. O. Buryy, D. Sugak, I. Syvorotka, et al., XV IEEE Int. Conf. on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), Polyana, May 22–26, 2019, p. 148. https://doi.org/10.1109/MEMSTECH.2019.8817401

  19. G. Rosenman, V. D. Kugel, and D. Shur, Ferroelectrics 172 (1), 7 (1995).

    Article  ADS  Google Scholar 

  20. I. V. Kubasov, A. M. Kislyuk, A. V. Turutin, et al., Sensors 19 (3), 614 (2019).

    Article  ADS  Google Scholar 

  21. A. S. Bykov, S. G. Grigoryan, R. N. Zhukov, et al., Russ. Microelectron. 43, 536 (2014). https://doi.org/10.1134/S1063739714080034

    Article  Google Scholar 

  22. I. V. Kubasov, A. M. Kislyuk, A. S. Bykov, et al., Crystallogr. Rep. 61 (2), 258 (2016). https://doi.org/10.1134/S1063774516020115

    Article  ADS  Google Scholar 

  23. K. Nakamura, H. Ando, and H. Shimizu, Appl. Phys. Lett. 50, 1413 (1987). https://doi.org/10.1063/1.97838

    Article  ADS  Google Scholar 

  24. I. V. Kubasov, A. M. Kislyuk, T. S. Ilina, et al., J. Mater. Chem. C 9, 15591 (2021). https://doi.org/10.1039/D1TC04170C

    Article  Google Scholar 

  25. J. V. Vidal, A. V. Turutin, I. V. Kubasov, et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67, 1219 (2020). https://doi.org/10.1109/TUFFC.2020.2967842

    Article  Google Scholar 

  26. I. V. Kubasov, A. M. Kislyuk, A. V. Turutin, et al., Russ. Microelectron. 50, 571 (2021). https://doi.org/10.1134/S1063739721080035

    Article  Google Scholar 

  27. M. Tasson, H. Legal, J. C. Gay, et al., Ferroelectrics 13, 479 (1976). https://doi.org/10.1080/00150197608236646

    Article  ADS  Google Scholar 

  28. I. V. Kubasov, M. S. Timshina, D. A. Kiselev, et al., Crystallogr. Rep. 60 (5), 700 (2015). https://doi.org/10.1134/S1063774515040136

    Article  ADS  Google Scholar 

  29. N. F. Evlanova and L. N. Rashkovich, Sov. Phys. Solid State 16, 354 (1974).

    Google Scholar 

  30. N. Ohnishi, Jpn. J. Appl. Phys. 16, 1069 (1977). https://doi.org/10.1143/JJAP.16.1069

    Article  ADS  Google Scholar 

  31. K. Nakamura and H. Shimizu, Ferroelectrics 93, 211 (1989). https://doi.org/10.1080/00150198908017348

    Article  ADS  Google Scholar 

  32. M. Ueda, H. Sawada, A. Tanaka, et al., IEEE Symp. on Ultrasonics, Honolulu, December 4–7, 1990, p. 211. https://doi.org/10.1109/ULTSYM.1990.171548

  33. I. V. Kubasov, A. V. Popov, A. S. Bykov, et al., Russ. Microelectron. 46, 557 (2016). https://doi.org/10.1134/S1063739717080108

    Article  Google Scholar 

  34. V. Ya. Shur, I. S. Baturin, E. A. Mingaliev, et al., Appl. Phys. Lett. 106, 053116 (2015). https://doi.org/10.1063/1.4907679

  35. J. G. Smits, S. I. Dalke, and T. K. Cooney, Sens. Actuators, A 28, 41 (1991). https://doi.org/10.1016/0924-4247(91)80007-C

    Article  Google Scholar 

  36. J. G. Smits and A. Ballato, J. Microelectromech. Syst. 3, 105 (1994). https://doi.org/10.1109/84.311560

    Article  Google Scholar 

  37. J. Goli, J. G. Smits, and A. Ballato, XLIX IEEE Int. Frequency Control Symp., San Fransisco, May 31–June 2, 1995, p. 794. https://doi.org/10.1109/FREQ.1995.484086

  38. J. G. Smits, W.-S. Choi, and A. Ballato, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 250 (1997). https://doi.org/10.1109/58.585110

    Article  Google Scholar 

  39. M. D. Malinkovich, I. V. Kubasov, A. M. Kislyuk, et al., J. Nano-Electron. Phys. 11, 02033 (2019). https://doi.org/10.21272/jnep.11(2).02033

    Article  Google Scholar 

  40. K. Nakamura, M. Hosoya, and H. Shimizu, Jpn. J. Appl. Phys. 29, 95 (1990). https://doi.org/10.7567/JJAPS.29S1.95

    Article  ADS  Google Scholar 

  41. V. D. Kugel and G. Rosenman, Ferroelectr. Lett. Sect. 15, 55 (1993). https://doi.org/10.1080/07315179308204239

    Article  ADS  Google Scholar 

  42. A. V. Turutin, J. V. Vidal, I. V. Kubasov, et al., Appl. Phys. Lett. 112, 262906 (2018). https://doi.org/10.1063/1.5038014

  43. A. E. Blagov, A. S. Bykov, I. V. Kubasov, et al., Instrum. Exp. Tech. 59 (5), 728 (2016).

    Article  Google Scholar 

  44. A. Kulikov, A. Blagov, N. Marchenkov, et al., Sens. Actuators, A 291, 68 (2019). https://doi.org/10.1016/j.sna.2019.03.041

    Article  Google Scholar 

  45. A. E. Blagov, A. G. Kulikov, N. V. Marchenkov, et al., Exp. Tech. 41 (5), 517 (2017). https://doi.org/10.1007/s40799-017-0194-1

    Article  Google Scholar 

  46. N. Marchenkov, A. Kulikov, A. Targonsky, et al., Sens. Actuators, A 293, 48 (2019). https://doi.org/10.1016/j.sna.2019.04.028

    Article  Google Scholar 

  47. P. Fewster, Crit. Rev. Solid State Mater. Sci. 22 (2), 69 (1997). https://doi.org/10.1080/10408439708241259

    Article  ADS  Google Scholar 

  48. Y. A. Eliovich, V. I. Akkuratov, A. V. Targonskii, et al., Crystallogr. Rep. 63 (5), 724 (2018). https://doi.org/10.1134/S1063774518050097

    Article  ADS  Google Scholar 

  49. Y. A. Eliovich, V. I. Akkuratov, A. V. Targonskii, et al., J. Surf. Invest.: X-ray, Synchrotron. Neutron Tech. 14 (4), 756 (2020). https://doi.org/10.1134/S1027451020040254

    Article  Google Scholar 

  50. Ya. Eliovich, V. Akkuratov, A. Targonskii, et al., Sens. Actuators, A 343, 113674 (2022). https://doi.org/10.1016/j.sna.2022.113674

  51. https://www.tango-controls.org/

  52. V. I. Akkuratov, A. E. Blagov, Yu. V. Pisarevskii, et al., J. Commun. Technol. Electron. 66 (10), 1084 (2021). https://doi.org/10.1134/S1064226921100016

    Article  Google Scholar 

  53. V. Akkuratov, A. Blagov, Ya. Eliovich, et al., J. Appl. Crystallogr. 55 (1), 80 (2022). https://doi.org/10.1107/S160057672101236X

    Article  Google Scholar 

  54. A. E. Blagov, Yu. V. Pisarevskii, P. A. Prosekov, et al., Crystallogr. Rep. 62 (6), 831 (2017). https://doi.org/10.7868/S0023476117060030

    Article  ADS  Google Scholar 

  55. R. Frahm, Nucl. Instrum. Methods Phys. Res. A 270 (2–3), 578 (1988). https://doi.org/10.1016/0168-9002(88)90732-2

    Article  ADS  Google Scholar 

  56. O. Müller, M. Nachtegaal, J. Just, et al., J. Synchrotron Radiat. 23 (1), 260 (2016). https://doi.org/10.1107/S1600577515018007

    Article  Google Scholar 

  57. M. Richwin, R. Zaeper, D. Lu Ètzenkirchen-Hecht, et al., J. Synchrotron Radiat. 8 (2), 354 (2001). https://doi.org/10.1107/S0909049500017064

    Article  Google Scholar 

  58. H. Bornebusch, B. S. Clausen, G. Steffensen, et al., J. Synchrotron Radiat. 6 (3), 209 (1999). https://doi.org/10.1107/S0909049598017518

    Article  Google Scholar 

  59. D. Lu Ètzenkirchen-Hecht, S. Grundmann, and R. Frahm, J. Synchrotron Radiat. 8 (1), 6 (2001). https://doi.org/10.1107/S0909049500018033

    Article  Google Scholar 

  60. R. Frahm, J. Stötzel, and D. Lützenkirchen-Hecht, Synchrotron Radiat. News 22 (2), 6 (2009). https://doi.org/10.1080/08940880902813717

    Article  ADS  Google Scholar 

  61. A. I. Protsenko, A. E. Blagov, Yu. V. Pisarevskii, et al., Phys.-Uspekhi 64 (1), 83 (2021). https://doi.org/10.3367/UFNr.2020.06.038779

    Article  ADS  Google Scholar 

  62. M. Hagelstein, T. Liu, S. Mangold, and M. Bauer, J. Phys.: Conf. Ser. 430 (1), 012123 (2013). https://doi.org/10.1088/1742-6596/430/1/012123

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (grant no. 075-15-2021-1362) in the part concerning the development of methods for carrying out experiments and performed within the State assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences in the part concerning the study of the specific features and functional characteristics of adaptive bending elements. The study was also supported in part by the Russian Foundation for Basic Research (grant no. 19-29-12037 mk) in the part of preparation of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. Eliovich.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eliovich, Y.A., Blagov, A.E., Kulikov, A.G. et al. Adaptive X-Ray Optical Elements Based on Bending Piezoactuators: Possibilities and Prospects of Practical Application. Crystallogr. Rep. 67, 1041–1060 (2022). https://doi.org/10.1134/S1063774522070161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522070161

Navigation