Log in

Measurement and Calculation of the Refractive Indices of Langasite-Family Crystals Sr3NbFe3Si2O14, Ba3NbFe3Si2O14, and Ba3TaFe3Si2O14 and the Relationship of Optical Activity with Peculiarities of Electron-Density Distribution

  • PHYSICAL PROPERTIES OF CRYSTALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The optical properties of Sr3NbFe3Si2O14, Ba3NbFe3Si2O14, and Ba3TaFe3Si2O14 single crystals (promising multiferroics belonging to the langasite family (sp. gr. P321, Z = 1)) have been investigated. The crystals have been grown by floating zone melting. The measured and calculated refractive indices of these crystals are compared. The optical activity parameters are calculated based on the structural data. The atomic structures are compared proceeding from the precise X-ray diffraction analysis data. A correlation is established between the structural features and optical properties of the crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. B. V. Mill’, A. V. Butashin, A. M. Ellern, and A. A. Maier, Izv. Akad. Nauk SSSR, Neorg. Mater. 17 (9), 1648 (1981).

    Google Scholar 

  2. E. L. Belokoneva and N. V. Belov, Dokl. Akad. Nauk SSSR, 260 (6), 1363 (1981).

    Google Scholar 

  3. A. A. Kaminsky, B. V. Mill’, S. E. Sarkisov, et al., Physics and Spectroscopy of Laser Crystals (Nauka, Moscow, 1986) [in Russian], p. 197.

    Google Scholar 

  4. B. V. Mill and Yu. V. Pisarevsky, Proc. IEEE/EIA Int. Frequency Control Symp., Kansas City, Missouru, USA, 2000, p. 133.

  5. V. Yu. Ivanov, A. A. Mukhin, A. S. Prokorov, and B. V. Mill, Solid State Phenom. 152–153, 299 (2009). https://doi.org/10.4028/www.scientific.net/SSP.152-153.299

    Article  Google Scholar 

  6. H. D. Zhou, L. L. Lumata, P. L. Kuhns, et al., Chem. Mater. 21, 156 (2009). https://doi.org/10.1021/cm8018082

    Article  Google Scholar 

  7. K. Marty, P. Bordet, V. Simonet, et al., Phys. Rev. B 81, 054416 (2010). https://doi.org/10.1103/PhysRevB.81.054416

  8. I. S. Lyubutin, P. G. Naumov, B. V. Mill’, et al., Phys. Rev. B 84, 214425 (2011). https://doi.org/10.1103/PhysRevB.84.214425

  9. S. A. Pikin and I. S. Lyubutin, Phys. Rev. B 86, 064414 (2012). https://doi.org/10.1103/PhysRevB.86.064414

  10. H. Narita, Y. Tokunaga, and A. Kikkawa, Phys. Rev. B 94, 094433 (2016). https://doi.org/10.1103/PhysRevB.94.094433

  11. A. P. Dudka and B. V. Mill’, Crystallogr. Rep. 58 (4), 594 (2013).

    Article  ADS  Google Scholar 

  12. A. P. Dudka and B. V. Mill’, Crystallogr. Rep. 59 (5), 689 (2014).

    Article  ADS  Google Scholar 

  13. A. Zorko, F. Bert, P. Bordet, et al., J. Phys.: Conf. Ser. 145, 012006 (2009). https://doi.org/10.1088/1742-6596/145/1/012006

  14. A. P. Dudka and A. M. Balbashov, Crystallogr. Rep. 63 (1), 37 (2018).

    Article  ADS  Google Scholar 

  15. A. P. Dudka, A. M. Balbashov, and I. S. Lyubutin, Cryst. Growth Des. 16, 4943 (2016). https://doi.org/10.1021/acs.cgd.6b00505

    Article  Google Scholar 

  16. A. P. Dudka, A. M. Balbashov, and I. S. Lyubutin, Crystallogr. Rep. 61 (1), 24 (2016).

    Article  ADS  Google Scholar 

  17. C. Toulouse, M. Cazayous, S. de Brion, et al., Phys. Rev. B 92, 104302 (2015). https://doi.org/10.1103/PhysRevB.92.104302

  18. M. Ramakrishnan, Y. Joly, Y. W. Windsor, et al., Phys. Rev. B 95, 205145 (2017). https://doi.org/10.1103/PhysRevB.95.205145

  19. S. S. Rathore, R. Nathawat, and S. Vitta, Phys. Chem. Chem. Phys. 23, 554 (2021). https://doi.org/10.1039/d0cp04965d

    Article  Google Scholar 

  20. A. F. Konstantinova, T. G. Golovina, B. V. Nabatov, et al., Crystallogr. Rep. 60 (6), 907 (2015).

    Article  ADS  Google Scholar 

  21. A. F. Konstantinova, T. G. Golovina, and A. P. Dudka, Crystallogr. Rep. 63 (2), 200 (2018).

    Article  ADS  Google Scholar 

  22. S. Uda, S. Q. Wang, N. Konishi, et al., J. Cryst. Growth 237–239, 707 (2002). https://doi.org/10.1016/S0022-0248(01)02007-3

    Article  ADS  Google Scholar 

  23. A. M. Balbashov and S. K. Egorov, J. Cryst. Growth 52, 498 (1981). https://doi.org/10.1016/0022-0248(81)90328-6

    Article  ADS  Google Scholar 

  24. G. S. Landsberg, Optics: A Textbook for Higher Education Institutions (FIZMATLIT, Moscow, 2010) [in Russian].

    Google Scholar 

  25. https://www.metricon.com/

  26. O. A. Baturina, B. N. Grechushnikov, A. A. Kaminskii, et al., Kristallografiya 32 (2), 406 (1987).

    Google Scholar 

  27. K. A. Kaldybaev, A. F. Konstantinova, and Z. B. Perekalina, Gyrotropy of Uniaxial Absorbing Crystals (Izd-vo ISPIN, Moscow, 2000) [in Russian].

    Google Scholar 

  28. J. Stade, L. Bohaty, M. Hengst, and R. B. Heimann, Cryst. Res. Technol. 37, 1113 (2002). https://doi.org/10.1002/1521-4079(200210)37:10<1113:: AID-CRAT1113>3.0.CO;2-E

  29. S. S. Batsanov, Structural Refractometry (Vysshaya Shkola, Moscow, 1976) [in Russian].

  30. A. M. Glazer, J. Appl. Crystallogr. 35, 652 (2002). https://doi.org/10.1107/S0021889802013997

    Article  Google Scholar 

  31. A. V. Shubnikov, Principles of Optical Crystallography (Consultants Bureau, New York, 1960).

    Book  MATH  Google Scholar 

  32. V. V. Geras’kin, N. S. Kozlova, E. V. Zabelina, and I. M. Isaev, Mater. Elektron. Tekh., No. 3, 33 (2009).

  33. R. B. Heimann, M. Hengst, M. Rossberg, and J. Bohm, Phys. Status Solidi A 198 (2), 415 (2003). https://doi.org/10.1002/pssa.200306627

    Article  ADS  Google Scholar 

  34. A. Wei, B. Wang, H. Qi, and D. Yuan, Cryst. Res. Technol. 41 (4), 371 (2006). https://doi.org/10.1002/crat.200510589

    Article  Google Scholar 

  35. Agilent Technologies, Xcalibur CCD System, CrysAlisPro Software System, Version 1.171.35.21 (Agilent Technologies UK Ltd., Oxford, UK, 2011).

    Google Scholar 

  36. A. Dudka, J. Appl. Crystallogr. 40, 602 (2007). https://doi.org/10.1107/S0021889807010618

    Article  MathSciNet  Google Scholar 

  37. V. Petricek, M. Dusek, and L. Palatinus, JANA2006. The Crystallographic Computing System (Institute of Physics, Prague, 2006).

    Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within a State assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Golovina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Dedicated to the memory of A. M. Balbashov

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konstantinova, A.F., Golovina, T.G., Dudka, A.P. et al. Measurement and Calculation of the Refractive Indices of Langasite-Family Crystals Sr3NbFe3Si2O14, Ba3NbFe3Si2O14, and Ba3TaFe3Si2O14 and the Relationship of Optical Activity with Peculiarities of Electron-Density Distribution. Crystallogr. Rep. 67, 951–957 (2022). https://doi.org/10.1134/S1063774522060141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522060141

Navigation