Log in

Analysis of Molecular Properties of a Biologically Active Heterotetranuclear [\({\text{Zn}}_{2}^{{{\text{II}}}}\)\({\text{Eu}}_{2}^{{{\text{III}}}}\)] 4,4'-Bipy-Salamo-Constructed Complex Using Experimental Results and DFT Approaches

  • STRUCTURE OF ORGANIC COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Independent self-assembled salamo-based heterotetranuclear [\({\text{Zn}}_{2}^{{{\text{II}}}}\)\({\text{Eu}}_{2}^{{{\text{III}}}}\)] complex, [{Zn(L)Eu(NO3)3}2(4,4'-bipy)]⋅2CH3OH, constructed from an asymmetric salamo-based bisoxime ligand 6-methoxy-6'-ethoxy-2,2'-[ethylenedioxybis(azinomethyl)]diphenol (H2L), was synthesized and validated by single crystal X-ray diffraction analysis, elemental analysis, infrared spectroscopy and UV–Vis absorption spectroscopy. X-ray diffraction analysis revealed that the Zn(II) atoms were five-coordinated, adopting a distorted square pyramidal geometry, and the Eu(III) atoms were ten-coordinated, forming a twisted bicapped square antiprismatic geometry. In addition, an infinite three-dimensional supramolecular structure was formed via intermolecular hydrogen bond interactions. Meanwhile, the structure of the [\({\text{Zn}}_{2}^{{{\text{II}}}}\)\({\text{Eu}}_{2}^{{{\text{III}}}}\)] complex was additionally calculated by the DFT method, its fluorescent and antibacterial properties were also investigated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. Akine and T. Nabeshima, Dalton Trans. 47, 10395 (2009).

    Article  Google Scholar 

  2. L. W. Zhang, Y. Zhang, Y. F. Cui, et al., Inorg. Chim. Acta 506, 119534 (2020).

    Article  Google Scholar 

  3. G. Grivani, G. Bruno, H. A. Rudbari, et al., Inorg. Chem. Commun. 18, 15 (2012).

    Article  Google Scholar 

  4. L. Wang, Z. L. Wei, Z. Z. Chen, et al., Microchem. J. 155, 104801 (2020).

    Article  Google Scholar 

  5. S. S. Sun, C. L. Stern, S. T. Nguyen, et al., J. Am. Chem. Soc. 126, 6314 (2004).

    Article  Google Scholar 

  6. C. Liu, Z. L. Wei, H. R. Mu, et al., J. Photochem. Photobiol. A 397, 112569 (2020).

    Article  Google Scholar 

  7. M. Yu, Y. Zhang, Y. Q. Pan, et al., Inorg. Chim. Acta 509, 119701 (2020).

    Article  Google Scholar 

  8. L. Wang, Z. L. Wei, C. Liu, et al. Spectrochim. Acta A 239, 118496 (2020).

    Article  Google Scholar 

  9. X. X. An, Z. Z. Chen, H. R. Mu, et al., Inorg. Chim. Acta 511, 119823 (2020).

    Article  Google Scholar 

  10. X. X. An, Q. Zhao, H. R. Mu, et al., Crystals 9, 101 (2019).

    Article  Google Scholar 

  11. Q. P. Kang, X. Y. Li, L. Wang, et al., Appl. Organomet. Chem. 33, e5013 (2019).

    Article  Google Scholar 

  12. H. R. Mu, M. Yu, L. Wang, et al., Phosphorus Sulfur Silicon Relat. Elem. 195, 730 (2020).

    Article  Google Scholar 

  13. H. L. Wu, G. L. Pan, Y. C. Bai, et al., J. Coord. Chem. 66, 2634 (2013).

    Article  Google Scholar 

  14. H. L. Wu, Y. C. Bai, Y. H. Zhang, et al., Z. Anorg. Allg. Chem. 640, 2062 (2014).

    Article  Google Scholar 

  15. H. L. Wu, G. L. Pan, Y. C. Bai, et al., Res. Chem. Intermed. 41, 3375 (2015).

    Article  Google Scholar 

  16. H. R. Mu, X. X. An, C. Liu, et al., J. Struct. Chem. 61, 1155 (2020).

    Article  Google Scholar 

  17. L. Wang, Y. Q. Pan, J. F. Wang, et al., J. Photochem. Photobiol. A 400, 112719 (2020).

    Article  Google Scholar 

  18. Q. Zhao, X. X. An, L. Z. Liu, et al., Inorg. Chim. Acta 490, 6 (2019).

    Article  ADS  Google Scholar 

  19. R. N. Bian, J. F. Wang, Y. J. Li, et al., J. Photochem. Photobiol. A. 400, 112829 (2020).

    Article  Google Scholar 

  20. X. Xu, R. N. Bian, S. Z. Guo, et al., Inorg. Chim. Acta 513, 119945 (2020).

    Article  Google Scholar 

  21. Y. Zhang, L. Z. Liu, Y. D. Peng, et al., Transit. Met. Chem. 44, 627 (2019).

    Article  Google Scholar 

  22. Y. D. Peng, Y. Zhang, Y. L. Jiang, et al., J. Fluoresc. 30, 1049 (2020).

    Article  Google Scholar 

  23. Y. Zhang, Y. J. Li, S. Z. Guo, et al., Transit. Met. Chem. 45, 485 (2020).

    Article  Google Scholar 

  24. Z. L. Wei, L. Wang, J. F. Wang, et al., Spectrochim. Acta A 228, 117775 (2020).

    Article  Google Scholar 

  25. L. Z. Liu, L. Wang, M. Yu, et al., Spectrochim. Acta A 222, 117209 (2019).

    Article  Google Scholar 

  26. L. Z. Liu, M. Yu, X. Y. Li, et al., Chin. J. Inorg. Chem. 35, 1283 (2019).

    Google Scholar 

  27. S. Z. Zhang, J. Chang, H. J. Zhang, et al., Chin. J. Inorg. Chem. 36, 503 (2020).

    Google Scholar 

  28. C. Liu, X. X. An, Y. F. Cui, et al., Appl. Organomet. Chem. 34, e5272 (2020).

    Google Scholar 

  29. Y. Q. Pan, Y. Zhang, M. Yu, et al., Appl. Organomet. Chem. 34, e5441 (2020).

    Article  Google Scholar 

  30. Y. Zhang, M. Yu, Y. Q. Pan, et al., Appl. Organomet. Chem. 34, e5442 (2020).

    Google Scholar 

  31. J. Chang, S. Z. Zhang, Y. Wu, et al., Transit. Met. Chem. 45, 279 (2020).

    Article  Google Scholar 

  32. Q. P. Kang, X. Y. Li, Z. L. Wei, et al., Polyhedron 165, 38 (2019).

    Article  Google Scholar 

  33. L. Wang, Z. L. Wei, M. Yu, et al., Chin. J. Inorg. Chem. 35, 1791 (2019).

    Google Scholar 

  34. X. Y. Li, Q. P. Kang, C. Liu, et al., New J. Chem. 43, 4605 (2019).

    Article  Google Scholar 

  35. Y. F. Cui, Y. Zhang, K. F. **e, et al., Crystals 9, 586 (2019).

    Article  Google Scholar 

  36. X. X. An, C. Liu, Z. Z. Chen, et al., Crystals 9, 602 (2019).

    Article  Google Scholar 

  37. Y. X. Sun, Y. Q. Pan, X. Xu, et al., Crystals 9, 607 (2019).

    Article  Google Scholar 

  38. Y. Zhang, Y. Q. Pan, M. Yu, et al., Appl. Organomet. Chem 33, e5240 (2019).

    Google Scholar 

  39. J. P. Costes, C. Duhayon, L. Vendier, et al., New J. Chem. 42, 3683 (2018).

    Article  Google Scholar 

  40. L. Q. Chai, L. Zhou, H. B. Zhang, et al., New J. Chem. 43, 12417 (2019).

    Article  Google Scholar 

  41. L. Zhou, Q. Hua, L. Q. Chai, et al., Polyhedron 158, 12417 (2019).

    Article  Google Scholar 

  42. A. A. A. Shamshoom, H. H. Meng, W. **, et al., Polyhedron 171, 212 (2019).

    Article  Google Scholar 

  43. Y. Q. Pan, X. Xu, Y. Zhang, et al., Spectrochim. Acta A 229, 117917 (2020).

    Article  Google Scholar 

  44. L. Xu, M. Yu, L. H. Li, et al., J. Struct. Chem. 60, 1358 (2019).

    Article  Google Scholar 

  45. M. Yu, H. R. Mu, L. Z. Liu, et al., Chin. J. Inorg. Chem. 35, 1109 (2019).

    Google Scholar 

  46. Z. L. Wei, L. Wang, S. Z. Guo, et al., RSC Adv. 9, 41298 (2019).

    Article  ADS  Google Scholar 

  47. L. Q. Chai, Q. Hu, K. Y. Zhang, et al., Appl. Organomet. Chem. 32, e4426 (2018).

    Article  Google Scholar 

  48. X. Y. Dong, Q. Zhao, Q. P. Kang, et al., Crystals 8, 230 (2018).

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21761018), the Science and Technology Program of Gansu Province (grant no. 18YF1GA057), the Program for Excellent Team of Scientific Research in Lanzhou Jiaotong University (201706), which we gratefully acknowledge. Computations were performed using National Supercomputing Center in Shenzhen, P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.-Y. Dong.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, XX., Wang, JF., **e, KF. et al. Analysis of Molecular Properties of a Biologically Active Heterotetranuclear [\({\text{Zn}}_{2}^{{{\text{II}}}}\)\({\text{Eu}}_{2}^{{{\text{III}}}}\)] 4,4'-Bipy-Salamo-Constructed Complex Using Experimental Results and DFT Approaches. Crystallogr. Rep. 66, 1238–1246 (2021). https://doi.org/10.1134/S1063774521070038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521070038

Navigation