Log in

Simulation of Thermal Surface Waves in a Protoplanetary Disk in 1+1D Approximation

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Heating by the central star is one of the key factors determining the physical structure of protoplanetary disks. Due to a large radial optical thickness, the equatorial regions of the disk are heated by infrared radiation from the disk surface (atmosphere), which in turn is heated by the direct radiation from the star. It was previously shown that interception of the stellar radiation by inhomogeneities on the disk surface can cause perturbations that propagate towards the star. In this work, within a detailed 1+1D-dimensional numerical model of a protoplanetary disk, the occurrence of such waves is studied. It was found that, in a disk that is optically thick to its own radiation, surface perturbations indeed form and propagate towards the star, which confirms the conclusions of other authors. However, in contrast to analytical predictions, we found that, for sufficiently massive disks, thermal waves affect only the upper layers without significant temperature fluctuations in the equatorial plane. The results obtained indicate the need to study this instability within more consistent hydrodynamic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. C. L. Brogan, L. M. Pérez, T. R. Hunter, W. R. F. Dent, et al., Astrophys. J. Lett. 808, L3 (2015); ar**v: 1503.02649 [astro-ph.SR].

    Article  ADS  Google Scholar 

  2. S. M. Andrews, Ann. Rev. Astron. Astrophys. 58, 483 (2020); ar**v: 2001.05007 [astro-ph.EP].

    Article  ADS  Google Scholar 

  3. J. Huang, S. M. Andrews, C. P. Dullemond, A. Isella, et al., Astrophys. J. Lett. 869, L42 (2018); ar**v: 1812.04041 [astro-ph.EP].

    Article  ADS  Google Scholar 

  4. C. Baruteau, A. Crida, S. J. Paardekooper, F. Masset, et al., in Protostars and Planets VI, Ed. by H. Beuther, R. S. Klessen, C. P. Dullemond, and T. Henning (Univ. of Arizona Press, Tucson, 2014), p. 667; ar**v: 1312.4293 [astro-ph.EP].

  5. R. Dong, Z. Zhu, and B. Whitney, Astrophys. J. 809, 93 (2015); ar**v: 1411.6063 [astro-ph.EP].

    Article  ADS  Google Scholar 

  6. G. Dipierro, G. Laibe, D. J. Price, and G. Lodato, Mon. Not. R. Astron. Soc. 459, L1 (2016); ar**v: 1602.07457 [astro-ph.EP].

    Article  ADS  Google Scholar 

  7. J. Bae, Z. Zhu, and L. Hartmann, Astrophys. J. 850, 201 (2017); ar**v: 1706.03066 [astro-ph.EP].

    Article  ADS  Google Scholar 

  8. S. Zhang, Z. Zhu, J. Huang, V. V. Guzmán, et al., Astrophys. J. Lett. 869, L47 (2018); ar**v:1812.04045 [astro-ph.EP].

    Article  ADS  Google Scholar 

  9. P. D’Alessio, J. Cantó, L. Hartmann, N. Calvet, and S. Lizano, Astrophys. J. 511, 896 (1999).

    Article  ADS  Google Scholar 

  10. C. P. Dullemond, Astron. Astrophys. 361, L17 (2000); ar**v: astro-ph/0007399.

    ADS  Google Scholar 

  11. S.-I. Watanabe and D. N. C. Lin, Astrophys. J. 672, 1183 (2008); ar**v: 0709.1760 [astro-ph].

    Article  ADS  Google Scholar 

  12. R. Siebenmorgen and F. Heymann, Astron. Astrophys. 539, A20 (2012); ar**v: 1201.3577 [astro-ph.SR].

    Article  ADS  Google Scholar 

  13. T. Ueda, M. Flock, and T. Birnstiel, Astrophys. J. Lett. 914, L38 (2021); ar**v: 2105.13852 [astro-ph.EP].

    Article  ADS  Google Scholar 

  14. Y. Wu and Y. Lithwick, ar**v: 2105.02680 [astro-ph.EP] (2021).

  15. E. I. Vorobyov and Y. N. Pavlyuchenkov, Astron. Astrophys. 606, A5 (2017); ar**v: 1706.00401 [astro-ph.GA].

    Article  ADS  Google Scholar 

  16. Y. N. Pavlyuchenkov, A. V. Tutukov, L. A. Maksimova, and E. I. Vorobyov, Astron. Rep. 64, 1 (2020); ar**v: 1912.08572 [astro-ph.SR].

    Article  ADS  Google Scholar 

  17. L. A. Maksimova, Y. N. Pavlyuchenkov, and A. V. Tutukov, Astron. Rep. 64, 815 (2020); ar**v: 2009.07750 [astro-ph.SR].

    Article  ADS  Google Scholar 

  18. N. N. Kalitkin, Numerical Methods (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  19. A. N. Youdin and J. Goodman, Astrophys. J. 620, 459 (2005); ar**v: astro-ph/0409263.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the reviewer for valuable comments and suggestions for improving the article.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-32-90103. VVA was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS” (20-1-2-20-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. N. Pavlyuchenkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlyuchenkov, Y.N., Maksimova, L.A. & Akimkin, V.V. Simulation of Thermal Surface Waves in a Protoplanetary Disk in 1+1D Approximation. Astron. Rep. 66, 321–329 (2022). https://doi.org/10.1134/S1063772922050055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922050055

Keywords:

Navigation